Package: rchemo (via r-universe)

October 11, 2024

Type Package

Title Dimension Reduction, Regression and Discrimination for Chemometrics

Version 0.1-3

Description Data exploration and prediction with focus on high dimensional data and chemometrics. The package was initially designed about partial least squares regression and discrimination models and variants, in particular locally weighted PLS models (LWPLS). Then, it has been expanded to many other methods for analyzing high dimensional data. The name 'rchemo' comes from the fact that the package is orientated to chemometrics, but most of the provided methods are fully generic to other domains. Functions such as transform(), predict(), coef() and summary() are available. Tuning the predictive models is facilitated by generic functions gridscore() (validation dataset) and gridcv() (cross-validation). Faster versions are also available for models based on latent variables (LVs) (gridscorely() and gridcvlv()) and ridge regularization (gridscorelb() and gridcvlb()).

Imports stats, graphics, grDevices, data.table, FNN, signal, e1071, utils

Depends R (>= 4.0)

Suggests knitr, rmarkdown

URL https://github.com/ChemHouse-group/rchemo/

License GPL-3 LazyData yes

NeedsCompilation no

Repository https://chemhouse-group.r-universe.dev

RemoteUrl https://github.com/chemhouse-group/rchemo

RemoteRef HEAD

RemoteSha 301e72f8ba745166340221f7b0eb941839ef162c

2 Contents

Contents

aggmean	4
aicplsr	5
asdgap	7
blockscal	8
cassav	9
cglsr	0
checkdupl	2
*	3
covsel	4
dderiv	5
detrend	6
dfplsr_cg	7
	20
dkrr	22
dmnorm	25
dtagg	26
ee	27
eposvd	28
•	29
-	80
	32
e	33
	34
	37
	1
	12
	13
	15
	16
1	18
	51
	3
	54
	57
	8
	51
	52
	54
	66
1	58
1	71
	15
1 - 66	18
	19
6	30
1	33
	-

Contents 3

mbplsr_mbplsda_allsteps
mse
octane
odis
orthog
ozone
pcasvd
pinv
plotjit
plotscore
plotsp
plotxna
plotxy
plskern
plsrda
plsrda_agg
plsr_agg
plsr_plsda_allsteps
rmgap
rr
rrda
sampcla
sampdp
sampks
savgol
scordis
segmkf
selwold
snv
sopls
soplsrda
soplsr_soplsda_allsteps
sourcedir
summ
svmr
transform
vip
wdist
xfit
163

Index

4 aggmean

aggmean

Centers of classes

Description

Calculation of the centers (means) of classes of row observations of a data set.

Usage

```
aggmean(X, y = NULL)
```

Arguments

X Data (n, p) for which are calculated the centers (column-wise means).

y Class membership (n,1) of the row of X. Default to NULL (all the rows of are

considered).

Value

ct centers (column-wise means)

lev classes

ni number of observations in each per class

```
n <- 8 ; p <- 6
X <- matrix(rnorm(n * p, mean = 10), ncol = p, byrow = TRUE)
y <- sample(1:2, size = n, replace = TRUE)
aggmean(X, y)

data(forages)
Xtrain <- forages$Xtrain
ytrain <- forages$ytrain
table(ytrain)
u <- aggmean(Xtrain, ytrain)$ct
headm(u)
plotsp(u, col = 1:4, main = "Means")
x <- Xtrain[1:20, ]
plotsp(x, ylab = "Absorbance", col = "grey")
u <- aggmean(x)$ct
plotsp(u, col = "red", add = TRUE, lwd = 2)</pre>
```

aicplsr 5

aicplsr

AIC and Cp for Univariate PLSR Models

Description

Computation of the AIC and Mallows's Cp criteria for univariate PLSR models (Lesnoff et al. 2021). This function may receive modifications in the future (work in progress).

Usage

```
aicplsr(
   X, y, nlv, algo = NULL,
   meth = c("cg", "div", "cov"),
   correct = TRUE, B = 50,
   print = FALSE, ...)
```

Arguments

Χ	A nxp matrix or data frame of training observations.
У	A vector of length n of training responses.
nlv	The maximal number of latent variables (LVs) to consider in the model.
algo	a PLS algorithm. Default to NULL (plskern is used).
meth	Method used for estimating df . Possible values are "cg" (dfplsr_cg), "cov" (dfplsr_cov)or "div" (dfplsr_div).
correct	Logical. If TRUE (default), the AICc corection is applied to the criteria.
В	For meth = "div": the number of observations in the data receiving perturbation (maximum is n ; see dfplsr_cov). For meth = "cov": the number of bootstrap replications (see dfplsr_cov).
print	Logical. If TRUE, fitting information are printed.
	Optionnal arguments to pass in algo.

Details

For a model with a latent variables (LVs), function aicplsr calculates AIC and Cp by:

```
AIC(a) = n * log(SSR(a)) + 2 * (df(a) + 1)

Cp(a) = SSR(a)/n + 2 * df(a) * s2/n
```

where SSR is the sum of squared residuals for the current evaluated model, df(a) the estimated PLSR model complexity (i.e. nb. model's degrees of freedom), s2 an estimate of the irreductible error variance (computed from a low biased model) and n the number of training observations.

By default (argument correct), the small sample size correction (so-called AICc) is applied to AIC and Cp for deucing the bias.

The functions returns two estimates of Cp (cp1 and cp2), each corresponding to a different estimate of s2.

The model complexity df can be computed from three methods (argument meth).

6 aicplsr

Value

crit	dataframe with n , and the etimated criteria $(df, ct, ssr, aic, cp1, cp2)$ for 0 to nlv latent variables in the model.
delta	dataframe with the differences between the estimated values of aic , $cp1$ and $cp2$, and those of the model with the lowest estimated values of aic , $cp1$ and $cp2$, for models with 0 to nlv latent variables
opt	vector with the optimal number of latent variables in the model (i.e. minimizing aic, cp1 and cp2 values)

References

Burnham, K.P., Anderson, D.R., 2002. Model selection and multimodel inference: a practical informationtheoretic approach, 2nd ed. Springer, New York, NY, USA.

Burnham, K.P., Anderson, D.R., 2004. Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociological Methods & Research 33, 261-304. https://doi.org/10.1177/0049124104268644

Efron, B., 2004. The Estimation of Prediction Error. Journal of the American Statistical Association 99, 619-632. https://doi.org/10.1198/016214504000000692

Eubank, R.L., 1999. Nonparametric Regression and Spline Smoothing, 2nd ed, Statistics: Textbooks and Monographs. Marcel Dekker, Inc., New York, USA.

Hastie, T., Tibshirani, R.J., 1990. Generalized Additive Models, Monographs on statistics and applied probability. Chapman and Hall/CRC, New York, USA.

Hastie, T., Tibshirani, R., Friedman, J., 2009. The elements of statistical learning: data mining, inference, and prediction, 2nd ed. Springer, New York.

Hastie, T., Tibshirani, R., Wainwright, M., 2015. Statistical Learning with Sparsity: The Lasso and Generalizations. CRC Press

Hurvich, C.M., Tsai, C.-L., 1989. Regression and Time Series Model Selection in Small Samples. Biometrika 76, 297. https://doi.org/10.2307/2336663

Lesnoff, M., Roger, J.M., Rutledge, D.N., Submitted. Monte Carlo methods for estimating Mallows's Cp and AIC criteria for PLSR models. Illustration on agronomic spectroscopic NIR data. Journal of Chemometrics.

Mallows, C.L., 1973. Some Comments on Cp. Technometrics 15, 661-675. https://doi.org/10.1080/00401706.1973.1048910.

Ye, J., 1998. On Measuring and Correcting the Effects of Data Mining and Model Selection. Journal of the American Statistical Association 93, 120-131. https://doi.org/10.1080/01621459.1998.10474094

Zuccaro, C., 1992. Mallows'Cp Statistic and Model Selection in Multiple Linear Regression. International Journal of Market Research. 34, 1-10. https://doi.org/10.1177/147078539203400204

```
data(cassav)

Xtrain <- cassav$Xtrain
ytrain <- cassav$ytrain

nlv <- 25
res <- aicplsr(Xtrain, ytrain, nlv = nlv)</pre>
```

asdgap 7

```
names(res)
headm(res$crit)

z <- res$crit
oldpar <- par(mfrow = c(1, 1))
par(mfrow = c(1, 4))
plot(z$df[-1])
plot(z$aic[-1], type = "b", main = "AIC")
plot(z$cp1[-1], type = "b", main = "Cp1")
plot(z$cp2[-1], type = "b", main = "Cp2")
par(oldpar)</pre>
```

asdgap

asdgap

Description

ASD NIRS dataset, with gaps in the spectra at wawelengths = 1000 and 1800 nm.

Usage

```
data(asdgap)
```

Format

A list with 1 element: the data frame X with 5 spectra and 2151 variables.

References

Thanks to J.-F. Roger (Inrae, France) and M. Ecarnot (Inrae, France) for the method.

```
data(asdgap)
names(asdgap)
X <- asdgap$X

numcol <- which(colnames(X) == "1000" | colnames(X) == "1800")
numcol
plotsp(X, lwd = 1.5)
abline(v = as.numeric(colnames(X)[1]) + numcol - 1, col = "grey", lty = 3)</pre>
```

8 blockscal

|--|

Description

Functions managing blocks of data.

- blockscal: Autoscales a list of blocks (i.e. sets of columns) of a training X-data, and eventually the blocks of new X-data. The scaling factor (computed on the training) is the "norm" of the block, i.e. the square root of the sum of the variances of each column of the block.

- mblocks: Makes a list of blocks from X-data.

- hconcat: Concatenates horizontally the blocks of a list.

Usage

```
blockscal(Xtrain, X = NULL, weights = NULL)
mblocks(X, blocks)
hconcat(X)
```

Arguments

Xtrain	A list of blocks of training X-data
X	For blockscal: A list of blocks of new X-data. For mblocks: X-data. For hconcat: a list of blocks of X-data.
blocks	A list (of same length as the number of blocks) giving the column numbers in X.
weights	Weights $(n, 1)$ to apply to the training observations. Internally, weights are "normalized" to sum to 1. Default to NULL (weights are set to $1/n$).

Value

For mblocks: a list of blocks of X-data.

For honcat: a matrix concatenating a list of data blocks.

For blockscal:

Xtrain A list of blocks of training X-data, after block autoscaling.

X A list of blocks of new X-data, after block autoscaling.

disp The scaling factor (computed on the training).

Note

The second example is equivalent to MB-PLSR

cassav 9

Examples

```
n <- 10 ; p <- 10
Xtrain <- matrix(rnorm(n * p), ncol = p)</pre>
ytrain <- rnorm(n)</pre>
m <- 2
Xtest <- matrix(rnorm(m * p), ncol = p)</pre>
colnames(Xtest) \leftarrow paste("v", 1:p, sep = "")
Xtrain
Xtest
blocks <- list(1:2, 4, 6:8)
zXtrain <- mblocks(Xtrain, blocks = blocks)</pre>
zXtest <- mblocks(Xtest, blocks = blocks)</pre>
zXtrain
blockscal(zXtrain, zXtest)
res <- blockscal(zXtrain, zXtest)</pre>
hconcat(res$Xtrain)
hconcat(res$X)
## example of equivalence with MB-PLSR
n <- 10 ; p <- 10
Xtrain <- matrix(rnorm(n * p), ncol = p)</pre>
ytrain <- rnorm(n)</pre>
m < - 2
Xtest <- matrix(rnorm(m * p), ncol = p)</pre>
colnames(Xtest) <- paste("v", 1:p, sep = "")</pre>
Xtrain
Xtest
blocks <- list(1:2, 4, 6:8)
X1 <- mblocks(Xtrain, blocks = blocks)</pre>
X1 <- lapply(1:length(X1), function(x) scale(X1[[x]]))</pre>
res <- blockscal(X1)</pre>
zXtrain <- hconcat(res$Xtrain)</pre>
nlv <- 3
fm <- plskern(zXtrain, ytrain, nlv = nlv)</pre>
```

cassav

cassav

Description

A NIRS dataset (absorbance) describing the concentration of a natural pigment in samples of tropical shrubs. Spectra were recorded from 400 to 2498 nm at 2 nm intervals.

10 cglsr

Usage

```
data(cassav)
```

Format

A list with the following components:

For the reference (calibration) data:

Xtrain A matrix whose rows are the NIR absorbance spectra (= log10(1 / Reflectance)).

ytrain A vector of the response variable (pigment concentration).

year A vector of the year of data collection (2009 to 2012; the test set correponds to year 2013).

For the test data:

Xtest A matrix whose rows are the NIR absorbance spectra (= log 10(1 / Reflectance)).

ytest A vector of the response variable (pigment concentration).

References

Davrieux, F., Dufour, D., Dardenne, P., Belalcazar, J., Pizarro, M., Luna, J., Londono, L., Jaramillo, A., Sanchez, T., Morante, N., Calle, F., Becerra Lopez-Lavalle, L., Ceballos, H., 2016. LOCAL regression algorithm improves near infrared spectroscopy predictions when the target constituent evolves in breeding populations. Journal of Near Infrared Spectroscopy 24, 109. https://doi.org/10.1255/jnirs.1213 CIAT Cassava Project (Colombia), CIRAD Qualisud Research Unit, and funded mainly by the CGIAR Research Program on Roots, Tubers and Bananas (RTB) with support from CGIAR Trust Fund contributors (https://www.cgiar.org/funders/).

Examples

```
data(cassav)
str(cassav)
```

cglsr

CG Least Squares Models

Description

Conjugate gradient algorithm (CG) for the normal equations (CGLS algorithm 7.4.1, Bjorck 1996, p.289)

Usage

```
cglsr(X, y, nlv, reorth = TRUE, filt = FALSE)
## S3 method for class 'Cglsr'
coef(object, ..., nlv = NULL)
## S3 method for class 'Cglsr'
predict(object, X, ..., nlv = NULL)
```

cglsr 11

Arguments

X For the main function: Training X-data (n, p). — For auxiliary functions: New

X-data (m, p) to consider.

y Univariate training Y-data (n, 1). nlv The number(s) of CG iterations.

reorth Logical. If TRUE, a Gram-Schmidt reorthogonalization of the normal equation

residual vectors is done.

filt Logical. If TRUE, the filter factors are computed (output F).

object For auxiliary functions: A fitted model, output of a call to the main functions.

... For auxiliary functions: Optional arguments. Not used.

Details

The code for re-orthogonalization (Hansen 1998) and filter factors (Vogel 1987, Hansen 1998) computations is a transcription (with few adaptations) of the matlab function 'cgls' (Saunders et al. https://web.stanford.edu/group/SOL/software/cgls/; Hansen 2008).

The filter factors can be used to compute the model complexity of CGLSR and PLSR models (see dfplsr_cg).

Data X and y are internally centered.

Missing values are not allowed.

Value

For cglsr:

B matrix with the model coefficients for the fix nlv.

gnew squared norm of the s vector

xmeans variable means for the training X-data ymeans variable means for the training Y-data

F If filt = TRUE, the filter factors

For coef.Cglsr:

int intercept value.

B matrix with the model coefficients.

For predict.Cglsr:

pred list of matrices, with the predicted values for each number nlv of CG iterations

12 checkdupl

References

Bjorck, A., 1996. Numerical Methods for Least Squares Problems, Other Titles in Applied Mathematics. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611971484

Hansen, P.C., 1998. Rank-Deficient and Discrete Ill-Posed Problems, Mathematical Modeling and Computation. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9780898719697

Hansen, P.C., 2008. Regularization Tools version 4.0 for Matlab 7.3. Numer Algor 46, 189-194. https://doi.org/10.1007/s11075-007-9136-9

Manne R. Analysis of two partial-least-squares algorithms for multivariate calibration. Chemometrics Intell. Lab. Syst. 1987; 2: 187-197.

Phatak A, De Hoog F. Exploiting the connection between PLS, Lanczos methods and conjugate gradients: alternative proofs of some properties of PLS. J. Chemometrics 2002; 16: 361-367.

Vogel, C. R., "Solving ill-conditioned linear systems using the conjugate gradient method", Report, Dept. of Mathematical Sciences, Montana State University, 1987.

Examples

```
z <- ozone$X
u <- which(!is.na(rowSums(z)))</pre>
X \leftarrow z[u, -4]
y < -z[u, 4]
dim(X)
headm(X)
Xtest <- X[1:2, ]</pre>
ytest <- y[1:2]
nlv <- 10
fm <- cglsr(X, y, nlv = nlv)</pre>
coef(fm)
coef(fm, nlv = 1)
predict(fm, Xtest)
predict(fm, Xtest, nlv = 1:3)
pred <- predict(fm, Xtest)$pred</pre>
msep(pred, ytest)
cglsr(X, y, nlv = 5, filt = TRUE)$F
```

checkdupl

Duplicated rows in datasets

Description

Finding and removing duplicated row observations in datasets.

checkna 13

Usage

```
checkdupl(X, Y = NULL, digits = NULL)
```

Arguments

X A dataset.

Y A dataset compared to X.

digits The number of digits when rounding the data before the duplication test. Default

to NULL (no rounding.

Value

a dataframe with the row numbers in the first and second datasets that are identical, and the values of the variables.

Examples

```
X1 <- matrix(c(1:5, 1:5, c(1, 2, 7, 4, 8)), nrow = 3, byrow = TRUE)
dimnames(X1) <- list(1:3, c("v1", "v2", "v3", "v4", "v5"))

X2 <- matrix(c(6:10, 1:5, c(1, 2, 7, 6, 12)), nrow = 3, byrow = TRUE)
dimnames(X2) <- list(1:3, c("v1", "v2", "v3", "v4", "v5"))

X1
X2
checkdupl(X1, X2)
checkdupl(X1)
checkdupl(matrix(rnorm(20), nrow = 5))

res <- checkdupl(X1)
s <- unique(res$rownum2)
zX1 <- X1[-s, ]
zX1</pre>
```

checkna

Find and count NA values in a dataset

Description

Find and count NA values in each row observation of a dataset.

Usage

```
checkna(X)
```

14 covsel

Arguments

X A dataset.

Value

A data frame summarizing the numbers of NA by rows.

Examples

```
X <- data.frame(
  v1 = c(NA, rnorm(9)),
  v2 = c(NA, rnorm(8), NA),
  v3 = c(NA, NA, NA, rnorm(7))
)
X
checkna(X)</pre>
```

covsel

CovSel

Description

Variable selection for high-dimensionnal data with the COVSEL method (Roger et al. 2011).

Usage

```
covsel(X, Y, nvar = NULL, scaly = TRUE, weights = NULL)
```

Arguments

 $egin{array}{lll} {\sf X} & {\sf X}{\operatorname{-data}\,}(n,p). \\ {\sf Y} & {\sf Y}{\operatorname{-data}\,}(n,q). \end{array}$

nvar Number of variables to select in X.

scaly If TRUE (default), each column of Y is scaled by its standard deviation.

weights Weights (n, 1) to apply to the training observations. Internally, weights are "nor-

malized" to sum to 1. Default to NULL (weights are set to 1/n).

Value

sel A dataframe where variable sel shows the column numbers of the variables

selected in X.

weights The weights used for the row observations.

dderiv 15

References

Roger, J.M., Palagos, B., Bertrand, D., Fernandez-Ahumada, E., 2011. CovSel: Variable selection for highly multivariate and multi-response calibration: Application to IR spectroscopy. Chem. Lab. Int. Syst. 106, 216-223.

Examples

```
n <- 6 ; p <- 4
X <- matrix(rnorm(n * p), ncol = p)
Y <- matrix(rnorm(n * 2), ncol = 2)
covsel(X, Y, nvar = 3)</pre>
```

dderiv

Derivation by finite difference

Description

Calculation of the first derivatives, by finite differences, of the row observations (e.g. spectra) of a dataset.

Usage

```
dderiv(X, n = 5, ts = 1)
```

Arguments

X X-data (n,p).

The number of points (i.e. columns of X) defining the window over wich is calculate each finite difference. The derivation is calculated for the point at the center of the window. Therefore, n must be an odd integer, and be higher or equal to 3.

ts A scaling factor for the finite differences (by default, ts = 1.)

Value

A matrix of the transformed data.

```
data(cassav)

X <- cassav$Xtest

n <- 15

Xp_derivate1 <- dderiv(X, n = n)

Xp_derivate2 <- dderiv(dderiv(X, n), n)</pre>
```

16 detrend

```
oldpar <- par(mfrow = c(1, 1))
par(mfrow = c(1, 2))
plotsp(X, main = "Signal")
plotsp(Xp_derivate1, main = "Corrected signal")
abline(h = 0, lty = 2, col = "grey")
par(oldpar)</pre>
```

detrend

Polynomial de-trend transformation

Description

Polynomial de-trend transformation of row observations (e.g. spectra) of a dataset. The function fits an orthogonal polynom of a given degree to each observation and returns the residuals.

Usage

```
detrend(X, degree = 1)
```

Arguments

X X-data (n, p). degree P Degree of the polynom.

Details

detrend uses function poly of package stats.

Value

A matrix of the transformed data.

```
data(cassav)

X <- cassav$Xtest

degree <- 1

Xp <- detrend(X, degree = degree)

oldpar <- par(mfrow = c(1, 1))
par(mfrow = c(1, 2))
plotsp(X, main = "Signal")
plotsp(Xp, main = "Corrected signal")
abline(h = 0, lty = 2, col = "grey")
par(oldpar)</pre>
```

dfplsr_cg

dfplsr_cg

Degrees of freedom of Univariate PLSR Models

Description

Computation of the model complexity df (number of degrees of freedom) of univariate PLSR models (with intercept). See Lesnoff et al. 2021 for an illustration.

- (1) Estimation from the CGLSR algorithm (Hansen, 1998).
- -dfplsr_cov
- (2) Monte Carlo estimation (Ye, 1998 and Efron, 2004). Details in relation with the functions are given in Lesnoff et al. 2021.
- dfplsr_cov: The covariances are computed by parametric bootstrap (Efron, 2004, Eq. 2.16). The residual variance $sigma^2$ is estimated from a low-biased model.
- dfplsr_div: The divergencies dy_fit/dy are computed by perturbation analysis(Ye, 1998 and Efron, 2004). This is a Stein unbiased risk estimation (SURE) of df.

Usage

```
dfplsr_cg(X, y, nlv, reorth = TRUE)

dfplsr_cov(
    X, y, nlv, algo = NULL,
    maxlv = 50, B = 30, print = FALSE, ...)

dfplsr_div(
    X, y, nlv, algo = NULL,
    eps = 1e-2, B = 30, print = FALSE, ...)
```

Arguments

Х	(A <i>nxp</i> matrix or data frame of training observations.
У	<i>'</i>	A vector of length n of training responses.
n	nlv	The maximal number of latent variables (LVs) to consider in the model.
r	reorth	For dfplsr_cg: Logical. If TRUE, a Gram-Schmidt reorthogonalization of the normal equation residual vectors is done.
а	algo	a PLS algorithm. Default to NULL (plskern is used).
m	nax1v	For dfplsr_cov: dDmension of the PLSR model (nb. LVs) used for parametric bootstrap.
е	eps	For dfplsr_div: The $epsilon$ quantity used for scaling the perturbation analysis.
В	3	For dfplsr_cov: Number of bootstrap replications. For dfplsr_div: number of observations in the data receiving perturbation (the maximum is <i>n</i>).
р	orint	Logical. If TRUE, fitting information are printed.
		Optionnal arguments to pass in the function defined in algo.

18 dfplsr_cg

Details

Missing values are not allowed.

The example below reproduces the numerical illustration given by Kramer & Sugiyama 2011 on the Ozone data (Fig. 1, center). The *pls.model* function from the R package "plsdof" v0.2-9 (Kramer & Braun 2019) is used for *df* calculations (*df.kramer*), and automatically scales the X matrix before PLS. The example scales also X for consistency when using the other functions.

For the Monte Carlo estimations, B Should be increased for more stability

Value

A list of outputs:

df vector with the model complexity for the models with a = 0, 1, ..., nlv compo-

nents.

cov For dfplsr_cov: vector with covariances, computed by parametric bootstrap.

References

Efron, B., 2004. The Estimation of Prediction Error. Journal of the American Statistical Association 99, 619-632. https://doi.org/10.1198/016214504000000692

Hastie, T., Tibshirani, R.J., 1990. Generalized Additive Models, Monographs on statistics and applied probability. Chapman and Hall/CRC, New York, USA.

Hastie, T., Tibshirani, R., Friedman, J., 2009. The elements of statistical learning: data mining, inference, and prediction, 2nd ed. Springer, NewYork.

Hastie, T., Tibshirani, R., Wainwright, M., 2015. Statistical Learning with Sparsity: The Lasso and Generalizations. CRC Press

Kramer, N., Braun, M.L., 2007. Kernelizing PLS, degrees of freedom, and efficient model selection, in: Proceedings of the 24th International Conference on Machine Learning, ICML 07. Association for Computing Machinery, New York, NY, USA, pp. 441-448. https://doi.org/10.1145/1273496.1273552

Kramer, N., Sugiyama, M., 2011. The Degrees of Freedom of Partial Least Squares Regression. Journal of the American Statistical Association 106, 697-705. https://doi.org/10.1198/jasa.2011.tm10107

Kramer, N., Braun, M. L. 2019. plsdof: Degrees of Freedom and Statistical Inference for Partial Least Squares Regression. R package version 0.2-9. https://cran.r-project.org

Lesnoff, M., Roger, J.M., Rutledge, D.N., 2021. Monte Carlo methods for estimating Mallow's Cp and AIC criteria for PLSR models. Illustration on agronomic spectroscopic NIR data. Journal of Chemometrics, 35(10), e3369. https://doi.org/10.1002/cem.3369

Stein, C.M., 1981. Estimation of the Mean of a Multivariate Normal Distribution. The Annals of Statistics 9, 1135-1151.

Ye, J., 1998. On Measuring and Correcting the Effects of Data Mining and Model Selection. Journal of the American Statistical Association 93, 120-131. https://doi.org/10.1080/01621459.1998.10474094

Zou, H., Hastie, T., Tibshirani, R., 2007. On the degrees of freedom of the lasso. The Annals of Statistics 35, 2173-2192. https://doi.org/10.1214/009053607000000127

dfplsr_cg

```
## EXAMPLE 1
data(ozone)
z <- ozone$X
u <- which(!is.na(rowSums(z)))</pre>
X \leftarrow z[u, -4]
y < -z[u, 4]
dim(X)
Xs <- scale(X)</pre>
nlv <- 12
res <- dfplsr_cg(Xs, y, nlv = nlv)</pre>
df.kramer <- c(1.000000, 3.712373, 6.456417, 11.633565, 12.156760, 11.715101, 12.349716,
  12.192682, 13.000000, 13.000000, 13.000000, 13.000000, 13.000000)
znlv <- 0:nlv
plot(znlv, res$df, type = "l", col = "red",
     ylim = c(0, 15),
     xlab = "Nb components", ylab = "df")
lines(znlv, znlv + 1, col = "grey40")
points(znlv, df.kramer, pch = 16)
abline(h = 1, lty = 2, col = "grey")
legend("bottomright", legend=c("dfplsr_cg","Naive df","df.kramer"), col=c("red","grey40","black"),
lty=c(1,1,0), pch=c(NA,NA,16), bty="n")
## EXAMPLE 2
data(ozone)
z <- ozone$X
u <- which(!is.na(rowSums(z)))</pre>
X \leftarrow z[u, -4]
y < -z[u, 4]
\dim(X)
Xs <- scale(X)</pre>
nlv <- 12
B <- 50
u <- dfplsr_cov(Xs, y, nlv = nlv, B = B)
v <- dfplsr_div(Xs, y, nlv = nlv, B = B)</pre>
df.kramer <- c(1.000000, 3.712373, 6.456417, 11.633565, 12.156760, 11.715101, 12.349716,
  12.192682, 13.000000, 13.000000, 13.000000, 13.000000, 13.000000)
znlv <- 0:nlv
plot(znlv, u$df, type = "l", col = "red",
     ylim = c(0, 15),
```

20 dkplsr

```
xlab = "Nb components", ylab = "df")
lines(znlv, v$df, col = "blue")
lines(znlv, znlv + 1, col = "grey40")
points(znlv, df.kramer, pch = 16)
abline(h = 1, lty = 2, col = "grey")
legend("bottomright", legend=c("dfplsr_cov","dfplsr_div","Naive df","df.kramer"),
col=c("blue","red","grey40","black"),
lty=c(1,1,1,0), pch=c(NA,NA,NA,16), bty="n")
```

dkplsr

Direct KPLSR Models

Description

Direct kernel PLSR (DKPLSR) (Bennett & Embrechts 2003). The method builds kernel Gram matrices and then runs a usual PLSR algorithm on them. This is faster (but not equivalent) to the "true" NIPALS KPLSR algorithm such as described in Rosipal & Trejo (2001).

Usage

```
dkplsr(X, Y, weights = NULL, nlv, kern = "krbf", ...)
## S3 method for class 'Dkpls'
transform(object, X, ..., nlv = NULL)
## S3 method for class 'Dkpls'
coef(object, ..., nlv = NULL)
## S3 method for class 'Dkplsr'
predict(object, X, ..., nlv = NULL)
```

Arguments

X	For the main function: Matrix with the training X-data (n, p) . — For auxiliary functions: A matrix with new X-data (m, p) to consider.
Υ	Matrix with the training Y-data (n, q) .
weights	vector of weights $(n,1)$ to apply to the training observations. Internally, weights are "normalized" to sum to 1. Default to NULL (weights are set to $1/n$).
nlv	For the main function: The number(s) of LVs to calculate. — For auxiliary functions: The number(s) of LVs to consider.
kern	Name of the function defining the considered kernel for building the Gram matrix. See krbf for syntax, and other available kernel functions (krbf, kpol, ktanh).
•••	Optional arguments to pass in the kernel function defined in kern (e.g. gamma for krbf, gamma and coef0 for ktanh, gamma and coef0 and degree for kpol).
object	For auxiliary functions: A fitted model, output of a call to the main function.

dkplsr 21

Value

For dkplsr:

X Matrix with the training X-data (n, p).

fm List with the outputs of the PLSR ((T): the X-score matrix (n,nlv); (P): the X-

loadings matrix (p,nlv); (R): The PLS projection matrix (p,nlv); (W): The X-loading weights matrix (p,nlv); (C): The Y-loading weights matrix; (TT): the X-score normalization factor; (xmeans): the centering vector of X (p,1); (ymeans): the centering vector of Y (q,1); (weights): the weights vector of Y-variables

(p,1); (U): intermediate output.

K kernel Gram matrix kern kernel function

dots Optional arguments passed in the kernel function

For transform. Dkplsr: A matrix (m, nlv) with the projection of the new X-data on the X-scores For predict. Dkplsr:

pred A list of matrices (m, q) with the Y predicted values for the new X-data

K kernel Gram matrix (m, nlv), with values for the new X-data

For coef. Dkplsr:

int matrix (1,nlv) with the intercepts

B matrix (n,nlv) with the coefficients

Note

The second example concerns the fitting of the function sinc(x) described in Rosipal & Trejo 2001 p. 105-106

References

Bennett, K.P., Embrechts, M.J., 2003. An optimization perspective on kernel partial least squares regression, in: Advances in Learning Theory: Methods, Models and Applications, NATO Science Series III: Computer & Systems Sciences. IOS Press Amsterdam, pp. 227-250.

Rosipal, R., Trejo, L.J., 2001. Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space. Journal of Machine Learning Research 2, 97-123.

```
## EXAMPLE 1

n <- 6 ; p <- 4

Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- rnorm(n)
Ytrain <- cbind(y1 = ytrain, y2 = 100 * ytrain)
m <- 3

Xtest <- Xtrain[1:m, , drop = FALSE]</pre>
```

22 dkrr

```
Ytest <- Ytrain[1:m, , drop = FALSE] ; ytest <- Ytest[1:m, 1]</pre>
nlv <- 2
fm <- dkplsr(Xtrain, Ytrain, nlv = nlv, kern = "krbf", gamma = .8)</pre>
transform(fm, Xtest)
transform(fm, Xtest, nlv = 1)
coef(fm)
coef(fm, nlv = 1)
predict(fm, Xtest)
predict(fm, Xtest, nlv = 0:nlv)$pred
pred <- predict(fm, Xtest)$pred</pre>
msep(pred, Ytest)
nlv <- 2
fm <- dkplsr(Xtrain, Ytrain, nlv = nlv, kern = "kpol", degree = 2, coef0 = 10)</pre>
predict(fm, Xtest, nlv = nlv)
## EXAMPLE 2
x < - seq(-10, 10, by = .2)
x[x == 0] <- 1e-5
n \leftarrow length(x)
zy <- sin(abs(x)) / abs(x)
y \leftarrow zy + rnorm(n, 0, .2)
plot(x, y, type = "p")
lines(x, zy, lty = 2)
X \leftarrow matrix(x, ncol = 1)
nlv <- 3
fm <- dkplsr(X, y, nlv = nlv)</pre>
pred <- predict(fm, X)$pred</pre>
plot(X, y, type = "p")
lines(X, zy, lty = 2)
lines(X, pred, col = "red")
```

dkrr

Direct KRR Models

Description

Direct kernel ridge regression (DKRR), following the same approach as for DKPLSR (Bennett & Embrechts 2003). The method builds kernel Gram matrices and then runs a RR algorithm on them. This is not equivalent to the "true" KRR (= LS-SVM) algorithm.

Usage

```
dkrr(X, Y, weights = NULL, 1b = 1e-2, kern = "krbf", ...)
```

dkrr 23

```
## S3 method for class 'Dkrr'
coef(object, ..., lb = NULL)
## S3 method for class 'Dkrr'
predict(object, X, ..., lb = NULL)
```

Arguments

X For the main function: Training X-data (n, p). — For the auxiliary functions:

New X-data (m, p) to consider.

Y Training Y-data (n, q).

weights Weights (n, 1) to apply to the training observations. Internally, weights are "nor-

malized" to sum to 1. Default to NULL (weights are set to 1/n).

1b A value of regularization parameter lambda.

kern Name of the function defining the considered kernel for building the Gram ma-

trix. See krbf for syntax, and other available kernel functions.

... Optional arguments to pass in the kernel function defined in kern (e.g. gamma

for krbf).

object For the auxiliary functions: A fitted model, output of a call to the main function.

Value

For dkrr:

X Matrix with the training X-data (n, p).

fm List with the outputs of the RR ((V): eigenvector matrix of the correlation matrix

(n,n); (TtDY): intermediate output; (sv): singular values of the matrix (1,n); (1b): value of regularization parameter lambda; (xmeans): the centering vector of X (p,1); (ymeans): the centering vector of Y (q,1); (weights): the weights vector

of X-variables (p,1)

K kernel Gram matrix kern kernel function

dots Optional arguments passed in the kernel function

For predict. Dkrr:

pred A list of matrices (m, q) with the Y predicted values for the new X-data

K kernel Gram matrix (m, nlv), with values for the new X-data

For coef.Dkrr:

int matrix (1,nlv) with the intercepts B matrix (n,nlv) with the coefficients

df model complexity (number of degrees of freedom)

24 dkrr

Note

The second example concerns the fitting of the function sinc(x) described in Rosipal & Trejo 2001 p. 105-106

References

Bennett, K.P., Embrechts, M.J., 2003. An optimization perspective on kernel partial least squares regression, in: Advances in Learning Theory: Methods, Models and Applications, NATO Science Series III: Computer & Systems Sciences. IOS Press Amsterdam, pp. 227-250.

Rosipal, R., Trejo, L.J., 2001. Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space. Journal of Machine Learning Research 2, 97-123.

```
## EXAMPLE 1
n < -6; p < -4
Xtrain <- matrix(rnorm(n * p), ncol = p)</pre>
ytrain <- rnorm(n)</pre>
Ytrain <- cbind(y1 = ytrain, y2 = 100 * ytrain)
m <- 3
Xtest <- Xtrain[1:m, , drop = FALSE]</pre>
Ytest <- Ytrain[1:m, , drop = FALSE] ; ytest <- Ytest[1:m, 1]</pre>
1b <- 2
fm <- dkrr(Xtrain, Ytrain, lb = lb, kern = "krbf", gamma = .8)</pre>
coef(fm)
coef(fm, 1b = .6)
predict(fm, Xtest)
predict(fm, Xtest, lb = c(0.1, .8))
pred <- predict(fm, Xtest)$pred</pre>
msep(pred, Ytest)
1b <- 2
fm <- dkrr(Xtrain, Ytrain, lb = lb, kern = "kpol", degree = 2, coef0 = 10)</pre>
predict(fm, Xtest)
## EXAMPLE 1
x < - seq(-10, 10, by = .2)
x[x == 0] <- 1e-5
n \leftarrow length(x)
zy <- \sin(abs(x)) / abs(x)
y \leftarrow zy + rnorm(n, 0, .2)
plot(x, y, type = "p")
lines(x, zy, lty = 2)
X \leftarrow matrix(x, ncol = 1)
fm <- dkrr(X, y, lb = .01, gamma = .5)
pred <- predict(fm, X)$pred</pre>
```

dmnorm 25

```
plot(X, y, type = "p")
lines(X, zy, lty = 2)
lines(X, pred, col = "red")
```

dmnorm

Multivariate normal probability density

Description

Prediction of the normal probability density of multivariate observations.

Usage

```
dmnorm(X = NULL, mu = NULL, sigma = NULL)
## S3 method for class 'Dmnorm'
predict(object, X, ...)
```

Arguments

X	For the main function: Training data (n,p) used for estimating the mean and the covariance matrix population (if mu or/and sigma are not provided). — For the auxiliary functions: New data (m,p) for which the density has to be predicted.
mu	The mean $(p,1)$ of the normal distribution. If NULL (default), mu is estimated by the column-wise mean of the training data.
sigma	The covariance matrix (pxp) of the normal distribution. If NULL (default), $sigma$ is estimated by the empirical covariance matrix (denominator $n-1$) of the training data.
object	For the auxiliary functions: A result of a call to dmnorm.
	For the auxiliary functions: Optional arguments.

Value

For dmnorm:

mu means of the X variables

Uinv inverse of the Cholesky decomposition of the covariance matrix

det squared determinant of the Cholesky decomposition of the covariance matrix

For predict:

pred Prediction of the normal probability density of new multivariate observations

26 dtagg

Examples

```
data(iris)

X <- iris[, 1:2]

Xtrain <- X[1:40, ]

Xtest <- X[40:50, ]

fm <- dmnorm(Xtrain)

fm

k <- 50

x1 <- seq(min(Xtrain[, 1]), max(Xtrain[, 1]), length.out = k)
x2 <- seq(min(Xtrain[, 2]), max(Xtrain[, 2]), length.out = k)
zX <- expand.grid(x1, x2)
pred <- predict(fm, zX)$pred
contour(x1, x2, matrix(pred, nrow = 50))

points(Xtest, col = "red", pch = 16)</pre>
```

dtagg

Summary statistics of data subsets

Description

Faster alternative to aggregate to calculate a summary statistic over data subsets. dtagg uses function data.table::data.table of package data.table.

Usage

```
dtagg(formula, data, FUN = mean, ...)
```

Arguments

formula A left and right-hand-sides formula defing the variable and the aggregation levels on which is calculated the statistic.

data A dataframe.

FUN Function defining the statistic to compute (default to mean).

... Eventual additional arguments to pass through FUN.

Value

A dataframe, with the values of the agregation level(s) and the corresponding computed statistic value.

dummy 27

Examples

```
dat <- data.frame(matrix(rnorm(2 * 100), ncol = 2))
names(dat) <- c("y1", "y2")
dat$typ1 <- sample(1:2, size = nrow(dat), TRUE)
dat$typ2 <- sample(1:3, size = nrow(dat), TRUE)
headm(dat)
dtagg(y1 ~ 1, data = dat)
dtagg(y1 ~ typ1 + typ2, data = dat)
dtagg(y1 ~ typ1 + typ2, data = dat, trim = .2)</pre>
```

dummy

Table of dummy variables

Description

The function builds a table of dummy variables from a qualitative variable. A binary (i.e. 0/1) variable is created for each level of the qualitative variable.

Usage

```
dummy(y)
```

Arguments

y A qualitative variable.

Value

Y A matrix of dummy variables (i.e. binary variables), each representing a given level of the qualitative variable.

lev levels of the qualitative variable.

ni number of observations per level of the qualitative variable.

```
y <- c(1, 1, 3, 2, 3)
dummy(y)

y <- c("B", "a", "B")
dummy(y)
dummy(as.factor(y))</pre>
```

28 eposvd

eposvd

External parameter orthogonalization (EPO)

Description

Pre-processing a X-dataset by external parameter orthogonalization (EPO; Roger et al 2003). The objective is to remove from a dataset X(n,p) some "detrimental" information (e.g. humidity effect) represented by a dataset D(m,p).

EPO consists in orthogonalizing the row observations of X to the detrimental sub-space defined by the first nlv non-centered PCA loadings vectors of D.

Function eposvd uses a SVD factorization of D and returns M(p,p) the orthogonalization matrix, and P the considered loading vectors of D.

Usage

```
eposvd(D, nlv)
```

Arguments

D A dataset (m, p) containing detrimental information.

nlv The number of first loadings vectors of D considered for the orthogonalization.

Details

The data corrected from the detrimental information D can be computed by Xcorrected = X*M. Rows of the corrected matrix Xcorr are orthogonal to the loadings vectors (columns of P): Xcorr*P.

Value

M orthogonalization matrix.

P detrimental directions matrix (p, nlv) (loadings of D = columns of P).

References

Roger, J.-M., Chauchard, F., Bellon-Maurel, V., 2003. EPO-PLS external parameter orthogonalisation of PLS application to temperature-independent measurement of sugar content of intact fruits. Chemometrics and Intelligent Laboratory Systems 66, 191-204. https://doi.org/10.1016/S0169-7439(03)00051-0

Roger, J.-M., Boulet, J.-C., 2018. A review of orthogonal projections for calibration. Journal of Chemometrics 32, e3045. https://doi.org/10.1002/cem.3045

euclsq 29

Examples

```
n <- 4 ; p <- 8
X <- matrix(rnorm(n * p), ncol = p)
m <- 3
D <- matrix(rnorm(m * p), ncol = p)

nlv <- 2
res <- eposvd(D, nlv = nlv)
M <- res$M
P <- res$P
M
P</pre>
```

euclsq

Matrix of distances

Description

- Matrix (n, m) of distances between row observations of two datasets X(n, p) and Y(m, p)
- euclsq: Squared Euclidean distance
- mahsq: Squared Mahalanobis distance
- Matrix (n, 1) of distances between row observations of a dataset X(n, p) and a vector p(n)
- euclsq_mu: Squared Euclidean distance
- mahsq_mu: Squared Euclidean distance

Usage

```
euclsq(X, Y = NULL)
euclsq_mu(X, mu)
mahsq(X, Y = NULL, Uinv = NULL)
mahsq_mu(X, mu, Uinv = NULL)
```

Arguments

X X-data (n, p).

Y Data (m, p) compared to X. If NULL (default), Y is set equal to X.

mu Vector (p) compared to X.

Uinv For Mahalanobis distance. The inverse of a Choleski factorization matrix of the covariance matrix of X. If NULL (default), Uinv is calculated internally.

30 fda

Value

A distance matrix.

Examples

```
n <- 5 ; p <- 3
X <- matrix(rnorm(n * p), ncol = p)</pre>
euclsq(X)
as.matrix(stats::dist(X)^2)
euclsq(X, X)
Y \leftarrow X[c(1, 3), ]
euclsq(X, Y)
euclsq_mu(X, Y[2, ])
i <- 3
euclsq(X, X[i, , drop = FALSE])
euclsq_mu(X, X[i, ])
S \leftarrow cov(X) * (n - 1) / n
i <- 3
mahsq(X)[i, drop = FALSE]
stats::mahalanobis(X, X[i, ], S)
mahsq(X)
Y \leftarrow X[c(1, 3), ]
mahsq(X, Y)
```

fda

Factorial discriminant analysis

Description

Factorial discriminant analysis (FDA). The functions maximize the compromise p'Bp/p'Wp, i.e. maxp'Bp with constraint p'Wp=1. Vectors p are the linear discrimant coefficients "LD".

- fda: Eigen factorization of $W^{(-1)}B$
- fdasvd: Weighted SVD factorization of the matrix of the class centers.

If W is singular, $W^{(-1)}$ is replaced by a MP pseudo-inverse.

Usage

```
fda(X, y, nlv = NULL)
fdasvd(X, y, nlv = NULL)
## S3 method for class 'Fda'
```

fda 31

```
transform(object, X, ..., nlv = NULL)
## S3 method for class 'Fda'
summary(object, ...)
```

Arguments

X For the main functions: Training X-data (n, p).— For the auxiliary functions: New X-data (m, p) to consider.
 y Training class membership (n). Note: If y is a factor, it is replaced by a character vector.
 nlv For the main functions: The number(s) of LVs to calculate. — For the auxiliary functions: The number(s) of LVs to consider.
 object For the auxiliary functions: A fitted model, output of a call to the main function.
 For the auxiliary functions: Optional arguments. Not used.

Value

For fda and fdasvd:

T X-scores matrix (n,nlv).

P X-loadings matrix (p,nlv) = coefficients of the linear discriminant function =

"LD" of function lda of package MASS.

Tcenters projection of the class centers in the score space.

eig vector of eigen values

sstot total variance

W unbiased within covariance matrix

xmeans means of the X variables

lev y levels

ni number of observations per level of the y variable

For transform. Fda: scores of the new X-data in the model.

For summary. Fda:

explvar Explained variance by PCA of the class centers in transformed scale.

References

Saporta G., 2011. Probabilités analyse des données et statistique. Editions Technip, Paris, France.

32 forages

Examples

```
data(iris)

X <- iris[, 1:4]
y <- iris[, 5]
table(y)

fm <- fda(X, y)
headm(fm$T)

transform(fm, X[1:3, ])

summary(fm)
plotxy(fm$T, group = y, ellipse = TRUE,
    zeroes = TRUE, pch = 16, cex = 1.5, ncol = 2)
points(fm$Tcenters, pch = 8, col = "blue", cex = 1.5)</pre>
```

forages

forages

Description

A NIRS dataset (pre-processed absorbance) describing the class membership of forages. Spectra were recorded from 1100 to 2498 nm at 2 nm intervals.

Usage

```
data(forages)
```

Format

A list with 4 components: Xtrain, ytrain, Xtest, ytest.

For the reference (calibration) data:

Xtrain A matrix whose rows are the pre-processed NIR absorbance spectra (= log10(1 / Reflectance)).

ytrain A vector of the response variable (class membership).

For the test data:

 $\textbf{Xtest} \ \ A \ matrix \ whose \ rows \ are \ the \ pre-processed \ NIR \ absorbance \ spectra \ (= \log 10 (1 \ / \ Reflectance)).$

ytest A vector of the response variable (class membership).

```
data(forages)
str(forages)
```

getknn 33

getknn	KNN selection		
--------	---------------	--	--

Description

Function getknn selects the k nearest neighbours of each row observation of a new data set (= query) within a training data set, based on a dissimilarity measure.

getknn uses function get.knnx of package FNN (Beygelzimer et al.) available on CRAN.

Usage

```
getknn(Xtrain, X, k = NULL, diss = c("eucl", "mahal"),
  algorithm = "brute", list = TRUE)
```

Arguments

Xtrain	Training X-data (n, p) .
Χ	New X-data (m, p) to consider.
k	The number of nearest neighbors to select in Xtrain for each observation of X.
diss	The type of dissimilarity used. Possible values are "eucl" (default; Euclidean distance) or "mahal" (Mahalanobis distance).
algorithm	Search algorithm used for Euclidean and Mahalanobis distances. Default to "brute". See get.knnx.
list	If TRUE (default), a list format is also returned for the outputs.

Value

A list of outputs, such as:

nn	A dataframe (mxk) with the indexes of the neighbors.
d	A dataframe (mxk) with the dissimilarities between the neighbors and the new observations.
listnn	Same as \$nn but in a list format.
listd	Same as \$d but in a list format.

```
n <- 10
p <- 4
X <- matrix(rnorm(n * p), ncol = p)
Xtrain <- X
Xtest <- X[c(1, 3), ]
m <- nrow(Xtest)</pre>
```

34 gridev

```
k <- 3
getknn(Xtrain, Xtest, k = k)

fm <- pcasvd(Xtrain, nlv = 2)
Ttrain <- fm$T
Ttest <- transform(fm, Xtest)
getknn(Ttrain, Ttest, k = k, diss = "mahal")</pre>
```

gridcv

Cross-validation

Description

Functions for cross-validating predictive models.

The functions return "scores" (average error rates) of predictions for a given model and a grid of parameter values, calculated from a cross-validation process.

- gridcv: Can be used for any model.
- gridcvlv: Specific to models using regularization by latent variables (LVs) (e.g. PLSR). Much faster than gridcv.
- gridcvlb: Specific to models using ridge regularization (e.g. RR). Much faster than gridcv.

Usage

```
gridcv(X, Y, segm, score, fun, pars, verb = TRUE)
gridcvlv(X, Y, segm, score, fun, nlv, pars = NULL, verb = TRUE)
gridcvlb(X, Y, segm, score, fun, lb, pars = NULL, verb = TRUE)
```

Arguments

X	Training X-data (n, p) , or list of training X-data.
Υ	Training Y-data (n, q) .
segm	CV segments, typically output of segmkf or segmts.
score	A function calculating a prediction score (e.g. msep).
fun	A function corresponding to the predictive model.
nlv	For gridcvlv. A vector of numbers of LVs.
lb	For gridcvlb. A vector of ridge regulariation parameters.
pars	A list of named vectors. Each vector must correspond to an argument of the model function and gives the parameter values to consider for this argument. (see details)
verb	Logical. If TRUE, fitting information are printed.

gridev 35

Details

Argument pars (the grid) must be a list of named vectors, each vector corresponding to an argument of the model function and giving the parameter values to consider for this argument. This list can eventually be built with function mpars, which returns all the combinations of the input parameters, see the examples.

For gridcvlv, pars must not contain nlv (nb. LVs), and for gridcvlb, lb (regularization parameter *lambda*).

Value

Dataframes with the prediction scores for the grid.

Note

Examples are given: - with PLSR, using gridev and gridevlv (much faster) - with PLSLDA, using gridev and gridevlv (much faster) - with RR, using gridev and gridevlb (much faster) - with KRR, using gridev and gridevlb (much faster) - with LWPLSR, using gridevlv

```
## EXAMPLE WITH PLSR
n <- 50 ; p <- 8
X \leftarrow matrix(rnorm(n * p), ncol = p)
y <- rnorm(n)
Y \leftarrow cbind(y, 10 * rnorm(n))
segm < - segmkf(n = n, K = K, nrep = 1)
segm
nlv <- 5
pars <- mpars(nlv = 1:nlv)</pre>
pars
gridcv(
    X, Y, segm,
    score = msep,
    fun = plskern,
    pars = pars, verb = TRUE)
gridcvlv(
    X, Y, segm,
    score = msep,
    fun = plskern,
    nlv = 0:nlv, verb = TRUE
## EXAMPLE WITH PLSLDA
n <- 50 ; p <- 8
X <- matrix(rnorm(n * p), ncol = p, byrow = TRUE)</pre>
y \leftarrow sample(c(1, 4, 10), size = n, replace = TRUE)
```

36 gridev

```
segm \leftarrow segmkf(n = n, K = K, nrep = 1)
segm
nlv <- 5
pars <- mpars(nlv = 1:nlv, prior = c("unif", "prop"))</pre>
gridcv(
    X, y, segm,
    score = err,
    fun = plslda,
    pars = pars, verb = TRUE)
pars <- mpars(prior = c("unif", "prop"))</pre>
pars
gridcvlv(
    X, y, segm,
    score = err,
    fun = plslda,
    nlv = 1:nlv, pars = pars, verb = TRUE)
## EXAMPLE WITH RR
n <- 50 ; p <- 8
X \leftarrow matrix(rnorm(n * p), ncol = p)
y <- rnorm(n)
Y <- cbind(y, 10 * rnorm(n))</pre>
segm \leftarrow segmkf(n = n, K = K, nrep = 1)
segm
lb <- c(.1, 1)
pars <- mpars(lb = lb)</pre>
pars
gridcv(
    X, Y, segm,
    score = msep,
    fun = rr,
    pars = pars, verb = TRUE)
gridcvlb(
    X, Y, segm,
    score = msep,
    fun = rr,
    1b = 1b, verb = TRUE)
## EXAMPLE WITH KRR
n <- 50 ; p <- 8
X <- matrix(rnorm(n * p), ncol = p)</pre>
y <- rnorm(n)</pre>
```

```
Y \leftarrow cbind(y, 10 * rnorm(n))
segm \leftarrow segmkf(n = n, K = K, nrep = 1)
segm
1b <- c(.1, 1)
gamma <- 10^(-1:1)
pars <- mpars(lb = lb, gamma = gamma)</pre>
pars
gridcv(
    X, Y, segm,
    score = msep,
    fun = krr,
    pars = pars, verb = TRUE)
pars <- mpars(gamma = gamma)</pre>
gridcvlb(
    X, Y, segm,
    score = msep,
    fun = krr,
    lb = lb, pars = pars, verb = TRUE)
## EXAMPLE WITH LWPLSR
n <- 50 ; p <- 8
X \leftarrow matrix(rnorm(n * p), ncol = p)
y <- rnorm(n)</pre>
Y \leftarrow cbind(y, 10 * rnorm(n))
K = 3
segm \leftarrow segmkf(n = n, K = K, nrep = 1)
segm
nlvdis <- 5
h <- c(1, Inf)
k < -c(10, 20)
nlv <- 5
pars <- mpars(nlvdis = nlvdis, diss = "mahal",</pre>
               h = h, k = k
pars
res <- gridcvlv(
    X, Y, segm,
    score = msep,
    fun = lwplsr,
    nlv = 0:nlv, pars = pars, verb = TRUE)
res
```

Description

Functions for tuning predictive models on a validation set.

The functions return "scores" (average error rates) of predictions for a given model and a grid of parameter values, calculated on a validation dataset.

- gridscore: Can be used for any model.
- gridscorelv: Specific to models using regularization by latent variables (LVs) (e.g. PLSR). Much faster than gridscore.
- gridscorelb: Specific to models using ridge regularization (e.g. RR). Much faster than gridscore.

Usage

```
gridscore(Xtrain, Ytrain, X, Y, score, fun, pars, verb = FALSE)
gridscorelv(Xtrain, Ytrain, X, Y, score, fun, nlv, pars = NULL, verb = FALSE)
gridscorelb(Xtrain, Ytrain, X, Y, score, fun, lb, pars = NULL, verb = FALSE)
```

Arguments

Xtrain	Training X-data (n, p) .
Ytrain	Training Y-data (n, q) .
Χ	Validation X-data (n, p) .
Υ	Validation Y-data (n, q) .
score	A function calculating a prediction score (e.g. msep).
fun	A function corresponding to the predictive model.
nlv	For gridscorely. A vector of numbers of LVs.
1b	For gridscorelb. A vector of ridge regulariation parameters.
pars	A list of named vectors. Each vector must correspond to an argument of the model function and gives the parameter values to consider for this argument. (see details)
verb	Logical. If TRUE, fitting information are printed.

Details

Argument pars (the grid) must be a list of named vectors, each vector corresponding to an argument of the model function and giving the parameter values to consider for this argument. This list can eventually be built with function mpars, which returns all the combinations of the input parameters, see the examples.

For gridscorely, pars must not contain nlv (nb. LVs), and for gridscorelb, lb (regularization parameter lambda).

Value

A dataframe with the prediction scores for the grid.

Note

Examples are given: - with PLSR, using gridscore and gridscorely (much faster) - with PLSLDA, using gridscore and gridscorely (much faster) - with RR, using gridscore and gridscorelb (much faster) - with KRR, using gridscore and gridscorely (much faster) - with LWPLSR, using gridscorely

```
## EXAMPLE WITH PLSR
n < -50; p < -8
Xtrain <- matrix(rnorm(n * p), ncol = p, byrow = TRUE)</pre>
ytrain <- rnorm(n)</pre>
Ytrain <- cbind(ytrain, 10 * rnorm(n))</pre>
m < -3
Xtest <- Xtrain[1:m, ]</pre>
Ytest <- Ytrain[1:m, ] ; ytest <- Ytest[, 1]</pre>
nlv <- 5
pars <- mpars(nlv = 1:nlv)</pre>
pars
gridscore(
    Xtrain, Ytrain, Xtest, Ytest,
    score = msep,
    fun = plskern,
    pars = pars, verb = TRUE
gridscorelv(
    Xtrain, Ytrain, Xtest, Ytest,
    score = msep,
    fun = plskern,
    nlv = 0:nlv, verb = TRUE
    )
fm <- plskern(Xtrain, Ytrain, nlv = nlv)</pre>
pred <- predict(fm, Xtest)$pred</pre>
msep(pred, Ytest)
## EXAMPLE WITH PLSLDA
n <- 50 ; p <- 8
X <- matrix(rnorm(n * p), ncol = p, byrow = TRUE)</pre>
y \leftarrow sample(c(1, 4, 10), size = n, replace = TRUE)
Xtrain <- X ; ytrain <- y
m < -5
Xtest \leftarrow X[1:m, ] ; ytest \leftarrow y[1:m]
pars <- mpars(nlv = 1:nlv, prior = c("unif", "prop"))</pre>
pars
gridscore(
    Xtrain, ytrain, Xtest, ytest,
```

```
score = err,
    fun = plslda,
    pars = pars, verb = TRUE
fm <- plslda(Xtrain, ytrain, nlv = nlv)</pre>
pred <- predict(fm, Xtest)$pred</pre>
err(pred, ytest)
pars <- mpars(prior = c("unif", "prop"))</pre>
pars
gridscorelv(
    Xtrain, ytrain, Xtest, ytest,
    score = err,
    fun = plslda,
    nlv = 1:nlv, pars = pars, verb = TRUE
    )
## EXAMPLE WITH RR
n <- 50 ; p <- 8
Xtrain <- matrix(rnorm(n * p), ncol = p, byrow = TRUE)</pre>
ytrain <- rnorm(n)</pre>
Ytrain <- cbind(ytrain, 10 * rnorm(n))</pre>
m <- 3
Xtest <- Xtrain[1:m, ]</pre>
Ytest <- Ytrain[1:m, ] ; ytest <- Ytest[, 1]</pre>
lb <- c(.1, 1)
pars \leftarrow mpars(lb = lb)
pars
gridscore(
    Xtrain, Ytrain, Xtest, Ytest,
    score = msep,
    fun = rr,
    pars = pars, verb = TRUE
gridscorelb(
    Xtrain, Ytrain, Xtest, Ytest,
    score = msep,
    fun = rr,
    lb = lb, verb = TRUE
    )
## EXAMPLE WITH KRR
n <- 50 ; p <- 8
Xtrain <- matrix(rnorm(n * p), ncol = p, byrow = TRUE)</pre>
ytrain <- rnorm(n)</pre>
Ytrain <- cbind(ytrain, 10 * rnorm(n))</pre>
m <- 3
Xtest <- Xtrain[1:m, ]</pre>
```

headm 41

```
Ytest <- Ytrain[1:m, ] ; ytest <- Ytest[, 1]</pre>
lb <- c(.1, 1)
gamma <- 10^(-1:1)
pars <- mpars(lb = lb, gamma = gamma)</pre>
gridscore(
    Xtrain, Ytrain, Xtest, Ytest,
    score = msep,
    fun = krr,
    pars = pars, verb = TRUE
pars <- mpars(gamma = gamma)</pre>
gridscorelb(
    Xtrain, Ytrain, Xtest, Ytest,
    score = msep,
    fun = krr,
    lb = lb, pars = pars, verb = TRUE
## EXAMPLE WITH LWPLSR
n <- 50 ; p <- 8
Xtrain <- matrix(rnorm(n * p), ncol = p, byrow = TRUE)</pre>
ytrain <- rnorm(n)</pre>
Ytrain <- cbind(ytrain, 10 * rnorm(n))</pre>
m <- 3
Xtest <- Xtrain[1:m, ]</pre>
Ytest <- Ytrain[1:m, ] ; ytest <- Ytest[, 1]</pre>
nlvdis <- 5
h \leftarrow c(1, Inf)
k < -c(10, 20)
nlv <- 5
pars <- mpars(nlvdis = nlvdis, diss = "mahal",</pre>
    h = h, k = k
pars
res <- gridscorelv(</pre>
    Xtrain, Ytrain, Xtest, Ytest,
    score = msep,
    fun = lwplsr,
    nlv = 0:nlv, pars = pars, verb = TRUE
    )
res
```

42 interpl

Description

Function headm displays the first part and the dimension of a data set.

Usage

```
headm(X)
```

Arguments

Χ

A matrix or dataframe.

Value

first 6 rows and columns of a dataset, number of rows, number of columns, dataset class.

Examples

```
n <- 1000
p <- 200
X <- matrix(rnorm(n * p), nrow = n)
headm(X)</pre>
```

interpl

Resampling of spectra by interpolation methods

Description

Resampling of signals by interpolation methods, including linear, spline, and cubic interpolation. The function uses function interp1 of package signal available on the CRAN.

Usage

```
interpl(X, w, meth = "cubic", ...)
```

Arguments

X	X-data (nxp) . For the interpolation, the column names of X are taken as numeric values, $w0$. If they are not numeric or missing, they are automatically set to w0 = 1:p.
W	A vector of the values where to interpolate (typically within the range of $w0$).
meth	The method of interpolation. See interp1.
	Optional arguments to pass in function splinefun if meth = "spline".

knnda 43

Value

A matrix of the interpolated signals.

Examples

```
data(cassav)

X <- cassav$Xtest
headm(X)

w <- seq(500, 2400, length = 10)
zX <- interpl(X, w, meth = "spline")
headm(zX)
plotsp(zX)</pre>
```

knnda

KNN-DA

Description

KNN weighted discrimination. For each new observation to predict, a number of k nearest neighbors is selected and the prediction is calculated by the most frequent class in y in this neighborhood.

Usage

Arguments

Х	For the main function: Training X-data (n, p) . — For the auxiliary functions: New X-data (m, p) to consider.
у	Training class membership (n) . Note: If y is a factor, it is replaced by a character vector.
nlvdis	The number of LVs to consider in the global PLS used for the dimension reduction before calculating the dissimilarities. If $nlvdis = 0$, there is no dimension reduction. (see details)
diss	The type of dissimilarity used for defining the neighbors. Possible values are "eucl" (default; Euclidean distance), "mahal" (Mahalanobis distance), or "correlation". Correlation dissimilarities are calculated by sqrt(.5 * (1 - rho)).

44 knnda

h	A scale scalar defining the shape of the weight function. Lower is h , sharper is the function. See wdist.
k	The number of nearest neighbors to select for each observation to predict.
object	For the auxiliary functions: A fitted model, output of a call to the main function.
	For the auxiliary functions: Optional arguments. Not used.

Details

In function knnda, the dissimilarities used for computing the neighborhood and the weights can be calculated from the original X-data or after a dimension reduction (argument nlvdis). In the last case, global PLS scores are computed from (X,Y) and the dissimilarities are calculated on these scores. For high dimension X-data, the dimension reduction is in general required for using the Mahalanobis distance.

Value

For knnda:list with input arguments.

For predict.Knnda:

pred	prediction calculated for each observation by the most frequent class in \boldsymbol{y} in its neighborhood.
listnn	list with the neighbors used for each observation to be predicted
listd	list with the distances to the neighbors used for each observation to be predicted
listw	list with the weights attributed to the neighbors used for each observation to be predicted

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

knnr 45

```
err(res$pred, ytest)
```

knnr KNN-R

Description

KNN weighted regression. For each new observation to predict, a number of k nearest neighbors is selected and the prediction is calculated by the average (eventually weighted) of the response Y over this neighborhood.

Usage

Arguments

X	For the main function: Training X-data (n,p) . — For the auxiliary functions: New X-data (m,p) to consider.
Υ	Training Y-data (n, q) .
nlvdis	The number of LVs to consider in the global PLS used for the dimension reduction before calculating the dissimilarities. If nlvdis = 0, there is no dimension reduction. (see details)
diss	The type of dissimilarity used for defining the neighbors. Possible values are "eucl" (default; Euclidean distance), "mahal" (Mahalanobis distance), or "correlation". Correlation dissimilarities are calculated by $sqrt(.5*(1-rho))$.
h	A scale scalar defining the shape of the weight function. Lower is h , sharper is the function. See wdist.
k	The number of nearest neighbors to select for each observation to predict.
object	— For the auxiliary functions: A fitted model, output of a call to the main function.
	— For the auxiliary functions: Optional arguments. Not used.

Details

In function knnr, the dissimilarities used for computing the neighborhood and the weights can be calculated from the original X-data or after a dimension reduction (argument nlvdis). In the last case, global PLS scores are computed from (X,Y) and the dissimilarities are calculated on these scores. For high dimension X-data, the dimension reduction is in general required for using the Mahalanobis distance.

kpca kpca

Value

For knnr:list with input arguments.

For predict.Knnr:

pred prediction calculated for each observation by the average (eventually weighted)

of the response Y over its neighborhood.

list with the neighbors used for each observation to be predicted

list with the distances to the neighbors used for each observation to be predicted

list with the weights attributed to the neighbors used for each observation to be

predicted

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

Examples

```
n <- 30 ; p <- 10
Xtrain \leftarrow matrix(rnorm(n * p), ncol = p)
ytrain <- rnorm(n)</pre>
Ytrain <- cbind(ytrain, 100 * ytrain)
m < -4
Xtest <- matrix(rnorm(m * p), ncol = p)</pre>
ytest <- rnorm(m)</pre>
Ytest <- cbind(ytest, 10 * ytest)
nlvdis <- 5 ; diss <- "mahal"</pre>
h <- 2; k <- 10
fm <- knnr(</pre>
    Xtrain, Ytrain,
    nlvdis = nlvdis, diss = diss,
    h = h, k = k
res <- predict(fm, Xtest)</pre>
names(res)
res$pred
msep(res$pred, Ytest)
```

kpca KPCA

Description

Kernel PCA (Scholkopf et al. 1997, Scholkopf & Smola 2002, Tipping 2001) by SVD factorization of the weighted Gram matrix D(1/2) * Phi(X) * Phi(X) * Phi(X) * D(1/2). D is a (n, n) diagonal matrix of weights for the observations (rows of X).

kpca 47

Usage

```
kpca(X, weights = NULL, nlv, kern = "krbf", ...)
## S3 method for class 'Kpca'
transform(object, X, ..., nlv = NULL)
## S3 method for class 'Kpca'
summary(object, ...)
```

Arguments

X For the main function: Training X-data (n, p). — For the auxiliary functions:

New X-data (m, p) to consider.

weights Weights (n, 1) to apply to the training observations. Internally, weights are "nor-

malized" to sum to 1. Default to NULL (weights are set to 1/n).

nlv The number of PCs to calculate.

kern Name of the function defining the considered kernel for building the Gram ma-

trix. See krbf for syntax, and other available kernel functions.

... Optional arguments to pass in the kernel function defined in kern (e.g. gamma

for krbf).

object — For the auxiliary functions: A fitted model, output of a call to the main

functions.

Value

For kpca:

X Training X-data (n, p).

Kt Gram matrixT X-scores matrix.P X-loadings matrix.

sv vector of singular values eig vector of eigenvalues.

weights vector of observation weights.

kern kern function.

dots Optional arguments.

For transform. Kpca: X-scores matrix for new X-data.

For summary. Kpca:

explvar explained variance matrix.

48 kplsr

References

Scholkopf, B., Smola, A., Muller, K.-R., 1997. Kernel principal component analysis, in: Gerstner, W., Germond, A., Hasler, M., Nicoud, J.-D. (Eds.), Artificial Neural Networks - ICANN 97, Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp. 583-588. https://doi.org/10.1007/BFb0020217

Scholkopf, B., Smola, A.J., 2002. Learning with kernels: support vector machines, regularization, optimization, and beyond, Adaptive computation and machine learning. MIT Press, Cambridge, Mass.

Tipping, M.E., 2001. Sparse kernel principal component analysis. Advances in neural information processing systems, MIT Press. http://papers.nips.cc/paper/1791-sparse-kernel-principal-component-analysis.pdf

Examples

```
## EXAMPLE 1
n <- 5; p <- 4
X <- matrix(rnorm(n * p), ncol = p)</pre>
nlv <- 3
kpca(X, nlv = nlv, kern = "krbf")
fm <- kpca(X, nlv = nlv, kern = "krbf", gamma = .6)</pre>
fm$T
transform(fm, X[1:2, ])
transform(fm, X[1:2, ], nlv = 1)
summary(fm)
## EXAMPLE 2
n <- 5; p <- 4
X <- matrix(rnorm(n * p), ncol = p)</pre>
nlv <- 3
pcasvd(X, nlv = nlv)T
kpca(X, nlv = nlv, kern = "kpol")$T
```

kplsr

KPLSR Models

Description

NIPALS Kernel PLSR algorithm described in Rosipal & Trejo (2001).

The algorithm is slow for n >= 500.

kplsr 49

Usage

Arguments

X	For the main function: Training X-data (n,p) . — For the auxiliary functions: New X-data (m,p) to consider.
Υ	Training Y-data (n, q) .
weights	Weights $(n, 1)$ to apply to the training observations. Internally, weights are "nor-

malized" to sum to 1. Default to NULL (weights are set to 1/n).

The number(s) of LVs to calculate. — For the auxiliary functions: The num-

ber(s) of LVs to consider.

kern Name of the function defining the considered kernel for building the Gram ma-

trix. See krbf for syntax, and other available kernel functions.

tol Tolerance level for stopping the NIPALS iterations.

maxit Maximum number of NIPALS iterations.

... Optional arguments to pass in the kernel function defined in kern (e.g. gamma

for krbf).

object For the auxiliary functions: A fitted model, output of a call to the main function.

Value

For kplsr:

X Training X-data (n, p).

Kt Gram matrix
T X-scores matrix.

C The Y-loading weights matrix.

U intermediate output.

R The PLS projection matrix (p,nlv). ymeans the centering vector of Y (q,1). weights vector of observation weights.

kern kern function.

50 kplsr

dots Optional arguments.

For transform.Kplsr: X-scores matrix for new X-data.

For coef.Kplsr:

int intercept values matrix. beta beta coefficient matrix.

For predict.Kplsr:

pred predicted values matrix for new X-data.

Note

The second example concerns the fitting of the function sinc(x) described in Rosipal & Trejo 2001 p. 105-106

References

Rosipal, R., Trejo, L.J., 2001. Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space. Journal of Machine Learning Research 2, 97-123.

```
## EXAMPLE 1
n < -6; p < -4
Xtrain <- matrix(rnorm(n * p), ncol = p)</pre>
ytrain <- rnorm(n)</pre>
Ytrain <- cbind(y1 = ytrain, y2 = 100 * ytrain)
m <- 3
Xtest <- Xtrain[1:m, , drop = FALSE]</pre>
Ytest <- Ytrain[1:m, , drop = FALSE] ; ytest <- Ytest[1:m, 1]</pre>
nlv <- 2
fm <- kplsr(Xtrain, Ytrain, nlv = nlv, kern = "krbf", gamma = .8)</pre>
transform(fm, Xtest)
transform(fm, Xtest, nlv = 1)
coef(fm)
coef(fm, nlv = 1)
predict(fm, Xtest)
predict(fm, Xtest, nlv = 0:nlv)$pred
pred <- predict(fm, Xtest)$pred</pre>
msep(pred, Ytest)
fm <- kplsr(Xtrain, Ytrain, nlv = nlv, kern = "kpol", degree = 2, coef0 = 10)
predict(fm, Xtest, nlv = nlv)
## EXAMPLE 2
```

kplsrda 51

```
x <- seq(-10, 10, by = .2)
x[x == 0] <- 1e-5
n <- length(x)
zy <- sin(abs(x)) / abs(x)
y <- zy + rnorm(n, 0, .2)
plot(x, y, type = "p")
lines(x, zy, lty = 2)
X <- matrix(x, ncol = 1)

nlv <- 2
fm <- kplsr(X, y, nlv = nlv)
pred <- predict(fm, X)$pred
plot(X, y, type = "p")
lines(X, zy, lty = 2)
lines(X, pred, col = "red")</pre>
```

kplsrda

KPLSR-DA models

Description

Discrimination (DA) based on kernel PLSR (KPLSR)

Usage

```
kplsrda(X, y, weights = NULL, nlv, kern = "krbf", ...)
## S3 method for class 'Kplsrda'
predict(object, X, ..., nlv = NULL)
```

Arguments

X	For main function: Training X-data (n,p) . — For auxiliary function: New X-data (m,p) to consider.
у	Training class membership (n) . Note: If y is a factor, it is replaced by a character vector.
weights	Weights (n) to apply to the training observations for the PLS2. Internally, weights are "normalized" to sum to 1. Default to NULL (weights are set to $1/n$).
nlv	For main function: The number(s) of LVs to calculate. — For auxiliary function: The number(s) of LVs to consider.
kern	Name of the function defining the considered kernel for building the Gram matrix. See krbf for syntax, and other available kernel functions.
•••	Optional arguments to pass in the kernel function defined in kern (e.g. gamma for krbf).
object	For auxiliary function: A fitted model, output of a call to the main functions.

52 kplsrda

Details

The training variable y (univariate class membership) is transformed to a dummy table containing nclas columns, where nclas is the number of classes present in y. Each column is a dummy variable (0/1). Then, a kernel PLSR (KPLSR) is run on the X-data and the dummy table, returning predictions of the dummy variables. For a given observation, the final prediction is the class corresponding to the dummy variable for which the prediction is the highest.

Value

For kplsrda:

fm list with the kplsrda model: (X): the training X-data (n, p); (Kt): the Gram ma-

trix; (T): X-scores matrix; (C): The Y-loading weights matrix; (U): intermediate output; (R): The PLS projection matrix (p,nlv); (ymeans): the centering vector of Y (q,1); (weights): vector of observation weights; (kern): kern function;

(dots): Optional arguments.

lev y levels

ni number of observations by level of y

For predict.Kplsrda:

pred predicted class for each observation

posterior calculated probability of belonging to a class for each observation

```
n <- 50 ; p <- 8
Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- sample(c(1, 4, 10), size = n, replace = TRUE)
m <- 5
Xtest <- Xtrain[1:m, ] ; ytest <- ytrain[1:m]

nlv <- 2
fm <- kplsrda(Xtrain, ytrain, nlv = nlv)
names(fm)
predict(fm, Xtest)

pred <- predict(fm, Xtest)*pred
err(pred, ytest)

predict(fm, Xtest, nlv = 0:nlv)*posterior
predict(fm, Xtest, nlv = 0)*posterior

predict(fm, Xtest, nlv = 0:nlv)*pred
predict(fm, Xtest, nlv = 0)*pred</pre>
```

krbf 53

krbf

Kernel functions

Description

Building Gram matrices for different kernels (e.g. Scholkopf & Smola 2002).

```
- radial basis: exp(-gamma * |x - y|^2)
```

- polynomial: (gamma * x' * y + coef0)^degree
- sigmoid: tanh(gamma * x' * y + coef0)

Usage

```
krbf(X, Y = NULL, gamma = 1)
kpol(X, Y = NULL, degree = 1, gamma = 1, coef0 = 0)
ktanh(X, Y = NULL, gamma = 1, coef0 = 0)
```

Arguments

Χ	Dataset (n, p) .
Υ	Dataset (m,p) . The resulting Gram matrix $K(X,Y)$ has dimensionnality (n,m) . If NULL (default), Y is set equal to X.
gamma	value of the gamma parameter in the kernel calculation.
degree	For kpo1: value of the degree parameter in the polynomial kernel calculation.
coef0	For kpol and ktanh: value of the coef0 parameter in the polynomial or sigmoid kernel calculation.

Value

Gram matrix

References

Scholkopf, B., Smola, A.J., 2002. Learning with kernels: support vector machines, regularization, optimization, and beyond, Adaptive computation and machine learning. MIT Press, Cambridge, Mass.

```
n <- 5 ; p <- 3
Xtrain <- matrix(rnorm(n * p), ncol = p)
Xtest <- Xtrain[1:2, , drop = FALSE]
gamma <- .8</pre>
```

54 krr

```
krbf(Xtrain, gamma = gamma)
krbf(Xtest, Xtrain, gamma = gamma)
exp(-.5 * euclsq(Xtest, Xtrain) / gamma^2)
kpol(Xtrain, degree = 2, gamma = .5, coef0 = 1)
```

krr

KRR (LS-SVMR)

Description

Kernel ridge regression models (KRR = LS-SVMR) (Suykens et al. 2000, Bennett & Embrechts 2003, Krell 2018).

Usage

```
krr(X, Y, weights = NULL, lb = 1e-2, kern = "krbf", ...)
## S3 method for class 'Krr'
coef(object, ..., lb = NULL)
## S3 method for class 'Krr'
predict(object, X, ..., lb = NULL)
```

Arguments

X	For main function: Training X-data (n,p) . — For auxiliary function: New X-data (m,p) to consider.
Υ	Training Y-data (n, q) .
weights	Weights $(n,1)$ to apply to the training observations. Internally, weights are "normalized" to sum to 1. Default to NULL (weights are set to $1/n$).
1b	A value of regularization parameter $lambda$. If 1b = 0, a pseudo-inverse is used in the RR.
kern	Name of the function defining the considered kernel for building the Gram matrix. See krbf for syntax, and other available kernel functions.
• • •	Optional arguments to pass in the kernel function defined in kern (e.g. gamma for krbf).
object	— For auxiliary function: A fitted model, output of a call to the main function.

krr 55

Value

For krr:

X Training X-data (n, p).

K Gram matrix
Kt Gram matrix

U intermediate output.
UtDY intermediate output.

sv singular values of the matrix (1,n)

1b value of regularization parameter lambda

ymeans the centering vector of Y(q,1)

weights the weights vector of X-variables (p,1)

kern kern function.

dots Optional arguments.

For coef.Krr:

int matrix (1,nlv) with the intercepts alpha matrix (n,nlv) with the coefficients

df model complexity (number of degrees of freedom)

For predict.Krr:

pred A list of matrices (m, q) with the Y predicted values for the new X-data

Note

KRR is close to the particular SVMR setting the epsilon coefficient to zero (no marges excluding observations). The difference is that a L2-norm optimization is done, instead L1 in SVM.

The second example concerns the fitting of the function sinc(x) described in Rosipal & Trejo 2001 p. 105-106

References

Bennett, K.P., Embrechts, M.J., 2003. An optimization perspective on kernel partial least squares regression, in: Advances in Learning Theory: Methods, Models and Applications, NATO Science Series III: Computer & Systems Sciences. IOS Press Amsterdam, pp. 227-250.

Cawley, G.C., Talbot, N.L.C., 2002. Reduced Rank Kernel Ridge Regression. Neural Processing Letters 16, 293-302. https://doi.org/10.1023/A:1021798002258

Krell, M.M., 2018. Generalizing, Decoding, and Optimizing Support Vector Machine Classification. arXiv:1801.04929.

Saunders, C., Gammerman, A., Vovk, V., 1998. Ridge Regression Learning Algorithm in Dual Variables, in: In Proceedings of the 15th International Conference on Machine Learning. Morgan Kaufmann, pp. 515-521.

56 krr

Suykens, J.A.K., Lukas, L., Vandewalle, J., 2000. Sparse approximation using least squares support vector machines. 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353). https://doi.org/10.1109/ISCAS.2000.856439

Welling, M., n.d. Kernel ridge regression. Department of Computer Science, University of Toronto, Toronto, Canada. https://www.ics.uci.edu/~welling/classnotes/papers_class/Kernel-Ridge.pdf

```
## EXAMPLE 1
n <- 6; p <- 4
Xtrain <- matrix(rnorm(n * p), ncol = p)</pre>
ytrain <- rnorm(n)</pre>
Ytrain <- cbind(y1 = ytrain, y2 = 100 * ytrain)
m < -3
Xtest <- Xtrain[1:m, , drop = FALSE]</pre>
Ytest <- Ytrain[1:m, , drop = FALSE] ; ytest <- Ytest[1:m, 1]</pre>
1b <- 2
fm <- krr(Xtrain, Ytrain, lb = lb, kern = "krbf", gamma = .8)
coef(fm)
coef(fm, lb = .6)
predict(fm, Xtest)
predict(fm, Xtest, lb = c(0.1, .6))
pred <- predict(fm, Xtest)$pred</pre>
msep(pred, Ytest)
1b <- 2
fm <- krr(Xtrain, Ytrain, lb = lb, kern = "kpol", degree = 2, coef0 = 10)</pre>
predict(fm, Xtest)
## EXAMPLE 2
x < - seq(-10, 10, by = .2)
x[x == 0] <- 1e-5
n \leftarrow length(x)
zy <- \sin(abs(x)) / abs(x)
y \leftarrow zy + rnorm(n, 0, .2)
plot(x, y, type = "p")
lines(x, zy, lty = 2)
X \leftarrow matrix(x, ncol = 1)
fm <- krr(X, y, 1b = .1, gamma = .5)
pred <- predict(fm, X)$pred</pre>
plot(X, y, type = "p")
lines(X, zy, lty = 2)
lines(X, pred, col = "red")
```

krrda 57

krrda	KRR-DA models	

Description

Discrimination (DA) based on kernel ridge regression (KRR).

Usage

```
krrda(X, y, weights = NULL, lb = 1e-5, kern = "krbf", ...)
## S3 method for class 'Krrda'
predict(object, X, ..., lb = NULL)
```

Arguments

X	For main function: Training X-data (n,p) . — For auxiliary function: New X-data (m,p) to consider.
у	Training class membership (n) . Note: If y is a factor, it is replaced by a character vector.
weights	Weights (n) to apply to the training observations for the PLS2. Internally, weights are "normalized" to sum to 1. Default to NULL (weights are set to $1/n$).
lb	A value of regularization parameter $lambda$. If 1b = 0, a pseudo-inverse is used in the RR.
kern	Name of the function defining the considered kernel for building the Gram matrix. See krbf for syntax, and other available kernel functions.
•••	Optional arguments to pass in the kernel function defined in kern (e.g. gamma for krbf).
object	— For auxiliary function: A fitted model, output of a call to the main functions.

Details

The training variable y (univariate class membership) is transformed to a dummy table containing nclas columns, where nclas is the number of classes present in y. Each column is a dummy variable (0/1). Then, a kernel ridge regression (KRR) is run on the X-data and the dummy table, returning predictions of the dummy variables. For a given observation, the final prediction is the class corresponding to the dummy variable for which the prediction is the highest.

Value

For krrda:

fm List with the outputs of the RR ((X): Training X-data (n, p); (K): Gram matrix; (Kt): Gram matrix; (U): intermediate output; (UtDY): intermediate output;

58 Ida

(sv): singular values of the matrix (1,n); (1b): value of regularization parameter lambda; (ymeans): the centering vector of Y (q,1); (weights): the weights vector of X-variables (p,1); (kern): kern function; (dots): Optional arguments.

lev y levels

ni number of observations by level of y

For predict.Krrda:

pred matrix or list of matrices (if lb is a vector), with predicted class for each obser-

vation

posterior matrix or list of matrices (if lb is a vector), calculated probability of belonging

to a class for each observation

Examples

```
n <- 50 ; p <- 8
Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- sample(c(1, 4, 10), size = n, replace = TRUE)
m <- 5
Xtest <- Xtrain[1:m, ] ; ytest <- ytrain[1:m]
lb <- 1
fm <- krrda(Xtrain, ytrain, lb = lb)
names(fm)
predict(fm, Xtest)

pred <- predict(fm, Xtest)$pred
err(pred, ytest)

predict(fm, Xtest, lb = 0:2)
predict(fm, Xtest, lb = 0)</pre>
```

lda

LDA and QDA

Description

Probabilistic (parametric) linear and quadratic discriminant analysis.

Usage

```
lda(X, y, prior = c("unif", "prop"))
qda(X, y, prior = c("unif", "prop"))
## S3 method for class 'Lda'
```

Ida 59

```
predict(object, X, ...)
## S3 method for class 'Qda'
predict(object, X, ...)
```

Arguments

For the main functions: Training X-data (n, p). — For the auxiliary functions: New X-data (m, p) to consider.
 Training class membership (n). Note: If y is a factor, it is replaced by a character vector.

prior The prior probabilities of the classes. Possible values are "unif" (default; proba-

bilities are set equal for all the classes) or "prop" (probabilities are set equal to

the observed proportions of the classes in y).

object For the auxiliary functions: A fitted model, output of a call to the main functions.

For the auxiliary functions: Optional arguments. Not used.

Details

For each observation to predict, the posterior probability to belong to a given class is estimated using the Bayes' formula, assuming priors (proportional or uniform) and a multivariate Normal distribution for the dependent variables X. The prediction is the class with the highest posterior probability.

LDA assumes homogeneous X—covariance matrices for the classes while QDA assumes different covariance matrices. The functions use dmnorm for estimating the multivariate Normal densities.

Value

For 1da and qda:

ct centers (column-wise means) for classes of observations.

W unbiased within covariance matrices for classes of observations.

wprior prior probabilities of the classes.

lev y levels.

ni number of observations by level of y.

For predict.Lda and predict.Qda:

pred predicted classes of observations.

ds Prediction of the normal probability density.

posterior posterior probabilities of the classes.

References

Saporta, G., 2011. Probabilités analyse des données et statistique. Editions Technip, Paris, France. Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

60 Ida

```
## EXAMPLE 1
data(iris)
X <- iris[, 1:4]</pre>
y <- iris[, 5]
N \leftarrow nrow(X)
nTest <- round(.25 * N)
nTraining <- N - nTest
s <- sample(1:N, nTest)</pre>
Xtrain <- X[-s, ]</pre>
ytrain <- y[-s]</pre>
Xtest <- X[s, ]</pre>
ytest <- y[s]</pre>
prior <- "unif"</pre>
fm <- lda(Xtrain, ytrain, prior = prior)</pre>
res <- predict(fm, Xtest)</pre>
names(res)
headm(res$pred)
headm(res$ds)
headm(res$posterior)
err(res$pred, ytest)
## EXAMPLE 2
data(iris)
X <- iris[, 1:4]</pre>
y <- iris[, 5]
N \leftarrow nrow(X)
nTest <- round(.25 * N)
nTraining <- N - nTest
s <- sample(1:N, nTest)</pre>
Xtrain <- X[-s, ]</pre>
ytrain <- y[-s]</pre>
Xtest <- X[s, ]</pre>
ytest <- y[s]</pre>
prior <- "prop"</pre>
fm <- lda(Xtrain, ytrain, prior = prior)</pre>
res <- predict(fm, Xtest)</pre>
names(res)
headm(res$pred)
```

Imr 61

```
headm(res$ds)
headm(res$posterior)
err(res$pred, ytest)
```

1mr

Linear regression models

Description

Linear regression models (uses function 1m).

Usage

```
lmr(X, Y, weights = NULL)
## S3 method for class 'Lmr'
coef(object, ...)
## S3 method for class 'Lmr'
predict(object, X, ...)
```

Arguments

New X-data (m, p) to consider.

Y Training Y-data (n, q).

weights Weights (n, 1) to apply to the training observations. Internally, weights are "nor-

malized" to sum to 1. Default to NULL (weights are set to 1/n).

object For the auxiliary functions: A fitted model, output of a call to the main functions.

... For the auxiliary functions: Optional arguments. Not used.

Value

For 1mr:

coefficients coefficient matrix. residuals residual matrix.

effects component relating to the linear fit, for use by extractor functions.

rank the numeric rank of the fitted linear model.

fitted.values the fitted mean values.

assign component relating to the linear fit, for use by extractor functions.

qr component relating to the linear fit, for use by extractor functions.

62 Imrda

df.residual the residual degrees of freedom.

xlevels (only where relevant) a record of the levels of the factors used in fitting.

call the matched call.

terms the terms object used.

model the model frame used.

For coef.Lmr:

int matrix (1,nlv) with the intercepts

B matrix (n,nlv) with the coefficients

For predict.Lmr:

pred A list of matrices (m, q) with the Y predicted values for the new X-data

Examples

```
n <- 8 ; p <- 3
X <- matrix(rnorm(n * p, mean = 10), ncol = p, byrow = TRUE)
y <- rnorm(n)
Y <- cbind(y, rnorm(n))
Xtrain <- X[1:6, ] ; Ytrain <- Y[1:6, ]
Xtest <- X[7:8, ] ; Ytest <- Y[7:8, ]

fm <- lmr(Xtrain, Ytrain)
coef(fm)
predict(fm, Xtest)
pred <- predict(fm, Xtest)$pred
msep(pred, Ytest)</pre>
```

lmrda

LMR-DA models

Description

Discrimination (DA) based on linear regression (LMR).

Usage

```
lmrda(X, y, weights = NULL)
## S3 method for class 'Lmrda'
predict(object, X, ...)
```

Imrda 63

Arguments

X	For the main function: Training X-data (n,p) . — For the auxiliary function: New X-data (m,p) to consider.
У	Training class membership (n) . Note: If y is a factor, it is replaced by a character vector.
weights	Weights (n) to apply to the training observations for the PLS2. Internally, weights are "normalized" to sum to 1. Default to NULL (weights are set to $1/n$).
object	For the auxiliary function: A fitted model, output of a call to the main functions.
	For the auxiliary function: Optional arguments. Not used.

Details

The training variable y (univariate class membership) is transformed to a dummy table containing nclas columns, where nclas is the number of classes present in y. Each column is a dummy variable (0/1). Then, a linear regression model (LMR) is run on the X-data and the dummy table, returning predictions of the dummy variables. For a given observation, the final prediction is the class corresponding to the dummy variable for which the prediction is the highest.

Value

For 1rmda:

fm

lev

List with the outputs((coefficients): coefficient matrix; (residuals): residual matrix; (fitted.values): the fitted mean values; (effects): component relating to the linear fit, for use by extractor functions; (weights): Weights (n) applied to the training observations for the PLS2; (rank): the numeric rank of the fitted linear model; (assign): component relating to the linear fit, for use by extractor functions; (qr): component relating to the linear fit, for use by extractor functions; (df.residual): the residual degrees of freedom; (xlevels): (only where relevant) a record of the levels of the factors used in fitting; (call): the matched call; (terms): the terms object used; (model): the model frame used).

y levels.

ni number of observations by level of y.

For predict.Lrmda:

pred predicted classes of observations.

posterior probability of belonging to a class for each observation.

```
n <- 50 ; p <- 8
Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- sample(c(1, 4, 10), size = n, replace = TRUE)
m <- 5
Xtest <- Xtrain[1:m, ] ; ytest <- ytrain[1:m]</pre>
```

64 locw

```
fm <- lmrda(Xtrain, ytrain)
names(fm)
predict(fm, Xtest)

coef(fm$fm)

pred <- predict(fm, Xtest)$pred
err(pred, ytest)</pre>
```

locw

Locally weighted models

Description

locw and locwlv are generic working functions returning predictions of KNN locally weighted (LW) models. One specific (= local) model is fitted for each observation to predict, and a prediction is returned. See the wrapper lwplsr (KNN-LWPLSR) for an example of use.

In KNN-LW models, the prediction is built from two sequential steps, therafter referred to as weighting"1" and weighting"2", respectively. For each new observation to predict, the two steps are as follow:

- Weighting"1". The k nearest neighbors (in the training data set) are selected and the prediction model is fitted (in the next step) only on this neighborhood. It is equivalent to give a weight = 1 to the neighbors, and a weight = 0 to the other training observations, which corresponds to a binary weighting.
- Weighting"2". Each of the k nearest neighbors eventually receives a weight (different from the usual 1/k) before fitting the model. The weight depend from the dissimilarity (preliminary calculated) between the observation and the neighbor. This corresponds to a within-neighborhood weighting.

The prediction model used in step "2" has to be defined in a function specified in argument fun. If there are m new observations to predict, a list of m vectors defining the m neighborhoods has to be provided (argument listnn). Each of the m vectors contains the indexes of the nearest neighbors in the training set. The m vectors are not necessary of same length, i.e. the neighborhood size can vary between observations to predict. If there is a weighting in step "2", a list of m vectors of weights have to be provided (argument listw). Then locw fits the model successively for each of the m neighborhoods, and returns the corresponding m predictions.

Function locwlv is dedicated to prediction models based on latent variables (LVs) calculations, such as PLSR. It is much faster and recommended.

Usage

```
locw(Xtrain, Ytrain, X, listnn, listw = NULL, fun, verb = FALSE, ...)
locwlv(Xtrain, Ytrain, X, listnn, listw = NULL, fun, nlv, verb = FALSE, ...)
```

locw 65

Arguments

Xtrain	Training X-data (n, p) .
Ytrain	Training Y-data (n, q) .
Χ	New X-data (m, p) to predict.
listnn	A list of m vectors defining weighting "1". Component i of this list is a vector (of length between 1 and n) of indexes. These indexes define the training observations that are the nearest neighbors of new observation i . Typically, listnn can be built from getknn, but any other list of length m can be provided. The m vectors can have equal length (i.e. the m neighborhoods are of equal size) or not (the number of neighbors varies between the observations to predict).
listw	A list of m vectors defining weighting "2". Component i of this list is a vector (that must have the same length as component i of listnn) of the weights given to the nearest neighbors when the prediction model is fitted. Internally, weights are "normalized" to sum to 1 in each component. Default to NULL (weights are set to $1/k$ where k is the size of the neihborhodd).
fun	A function corresponding to the prediction model to fit on the m neighborhoods.
nlv	For locwly: The number of LVs to calculate.
verb	Logical. If TRUE, fitting information are printed.

Value

pred matrix or list of matrices (if nlv is a vector), with predictions

Optional arguments to pass in function fun.

References

. . .

Lesnoff M, Metz M, Roger J-M. Comparison of locally weighted PLS strategies for regression and discrimination on agronomic NIR data. Journal of Chemometrics. 2020;n/a(n/a):e3209. doi:10.1002/cem.3209.

```
n <- 50 ; p <- 30
Xtrain <- matrix(rnorm(n * p), ncol = p, byrow = TRUE)
ytrain <- rnorm(n)
Ytrain <- cbind(ytrain, 100 * ytrain)
m <- 4
Xtest <- matrix(rnorm(m * p), ncol = p, byrow = TRUE)
ytest <- rnorm(m)
Ytest <- cbind(ytest, 10 * ytest)

k <- 5
z <- getknn(Xtrain, Xtest, k = k)
listnn <- z$listnn
listd <- z$listd
listnn
listd</pre>
```

66 lwplsr

lwplsr

KNN-LWPLSR

Description

Function lwplsr fits KNN-LWPLSR models described in Lesnoff et al. (2020). The function uses functions getknn, locw and PLSR functions. See the code for details. Many variants of such pipelines can be build using locw.

Usage

```
lwplsr(X, Y,
    nlvdis, diss = c("eucl", "mahal"),
    h, k,
    nlv,
    cri = 4,
    verb = FALSE)

## S3 method for class 'Lwplsr'
predict(object, X, ..., nlv = NULL)
```

Arguments

X — For the main function: Training X-data (n, p). — For the auxiliary function:

New X-data (m, p) to consider.

Y Training Y-data (n, q).

nlvdis The number of LVs to consider in the global PLS used for the dimension reduc-

tion before calculating the dissimilarities (see details). If nlvdis = 0, there is no

dimension reduction.

diss The type of dissimilarity used for defining the neighbors. Possible values are

"eucl" (default; Euclidean distance), "mahal" (Mahalanobis distance), or "corre-

lation". Correlation dissimilarities are calculated by sqrt(.5 * (1 - rho)).

Iwplsr 67

h A scale scalar defining the shape of the weight function. Lower is h, sharper is the function. See wdist.

k The number of nearest neighbors to select for each observation to predict.

nlv The number(s) of LVs to calculate in the local PLSR models.

cri Argument cri in function wdist.

verb Logical. If TRUE, fitting information are printed.

object — For the auxiliary function: A fitted model, output of a call to the main function.

— For the auxiliary function: Optional arguments.

Details

- LWPLSR: This is a particular case of "weighted PLSR" (WPLSR) (e.g. Schaal et al. 2002). In WPLSR, a priori weights, different from the usual 1/n (standard PLSR), are given to the n training observations. These weights are used for calculating (i) the PLS scores and loadings and (ii) the regression model of the response(s) over the scores (by weighted least squares). LWPLSR is a particular case of WPLSR. "L" comes from "localized": the weights are defined from dissimilarities (e.g. distances) between the new observation to predict and the training observations. By definition of LWPLSR, the weights, and therefore the fitted WPLSR model, change for each new observation to predict.

- KNN-LWPLSR: Basic versions of LWPLSR (e.g. Sicard & Sabatier 2006, Kim et al 2011) use, for each observation to predict, all the n training observation. This can be very time consuming, in particular for large n. A faster and often more efficient strategy is to preliminary select, in the training set, a number of k nearest neighbors to the observation to predict (this is referred to as "weighting1" in function locw) and then to apply LWPLSR only to this pre-selected neighborhood (this is referred to as weighting2" in locw). This strategy corresponds to KNN-LWPLSR.

In function lwplsr, the dissimilarities used for computing the weights can be calculated from the original X-data or after a dimension reduction (argument nlvdis). In the last case, global PLS scores are computed from (X,Y) and the dissimilarities are calculated on these scores. For high dimension X-data, the dimension reduction is in general required for using the Mahalanobis distance.

Value

For lwplsr: object of class Lwplsr

For predict.Lwplsr:

pred prediction calculated for each observation

list n list with the neighbors used for each observation to be predicted

list d list with the distances to the neighbors used for each observation to be predicted

list with the weights attributed to the neighbors used for each observation to be

predicted

68 lwplsrda

References

Kim, S., Kano, M., Nakagawa, H., Hasebe, S., 2011. Estimation of active pharmaceutical ingredients content using locally weighted partial least squares and statistical wavelength selection. Int. J. Pharm., 421, 269-274.

Lesnoff, M., Metz, M., Roger, J.-M., 2020. Comparison of locally weighted PLS strategies for regression and discrimination on agronomic NIR data. Journal of Chemometrics, e3209. https://doi.org/10.1002/cem.3209

Schaal, S., Atkeson, C., Vijayamakumar, S. 2002. Scalable techniques from nonparametric statistics for the real time robot learning. Applied Intell., 17, 49-60.

Sicard, E. Sabatier, R., 2006. Theoretical framework for local PLS1 regression and application to a rainfall data set. Comput. Stat. Data Anal., 51, 1393-1410.

Examples

```
n <- 30 ; p <- 10
Xtrain <- matrix(rnorm(n * p), ncol = p)</pre>
ytrain <- rnorm(n)</pre>
Ytrain <- cbind(ytrain, 100 * ytrain)
m < -4
Xtest <- matrix(rnorm(m * p), ncol = p)</pre>
ytest <- rnorm(m)</pre>
Ytest <- cbind(ytest, 10 * ytest)
nlvdis <- 5 ; diss <- "mahal"
h <- 2 ; k <- 10
nlv <- 2
fm <- lwplsr(</pre>
    Xtrain, Ytrain,
    nlvdis = nlvdis, diss = diss,
    h = h, k = k,
    nlv = nlv)
res <- predict(fm, Xtest)</pre>
names(res)
res$pred
msep(res$pred, Ytest)
res <- predict(fm, Xtest, nlv = 0:2)
res$pred
```

lwplsrda

KNN-LWPLS-DA Models

Description

- lwplsrda: KNN-LWPLSRDA models. This is the same methodology as for lwplsr except that PLSR is replaced by PLSRDA (plsrda). See the help page of lwplsr for details.
- lwplslda and lwplsqda: Same as above, but PLSRDA is replaced by either PLSLDA (plslda) or PLSQDA ((plsqda), respecively.

lwplsrda 69

Usage

```
lwplsrda(
   Х, у,
   nlvdis, diss = c("eucl", "mahal"),
   nlv,
    cri = 4,
    verb = FALSE
    )
lwplslda(
   Х, у,
    nlvdis, diss = c("eucl", "mahal"),
    h, k,
   nlv,
    prior = c("unif", "prop"),
    cri = 4,
    verb = FALSE
    )
lwplsqda(
    Х, у,
   nlvdis, diss = c("eucl", "mahal"),
   nlv,
    prior = c("unif", "prop"),
    cri = 4,
    verb = FALSE
    )
## S3 method for class 'Lwplsrda'
predict(object, X, ..., nlv = NULL)
## S3 method for class 'Lwplsprobda'
predict(object, X, ..., nlv = NULL)
```

Arguments

X	For the main functions: Training X-data (n, p) . — For the auxiliary functions: New X-data (m, p) to consider.
У	Training class membership (n) . Note: If y is a factor, it is replaced by a character vector.
nlvdis	The number of LVs to consider in the global PLS used for the dimension reduction before calculating the dissimilarities. If $nlvdis = 0$, there is no dimension reduction.
diss	The type of dissimilarity used for defining the neighbors. Possible values are

70 lwplsrda

"eucl" (default; Euclidean distance), "mahal" (Mahalanobis distance), or "correlation". Correlation dissimilarities are calculated by sqrt(.5 * (1 - rho)). h A scale scalar defining the shape of the weight function. Lower is h, sharper is the function. See wdist. k The number of nearest neighbors to select for each observation to predict. The number(s) of LVs to calculate in the local PLSDA models. nlv The prior probabilities of the classes. Possible values are "unif" (default; probaprior bilities are set equal for all the classes) or "prop" (probabilities are set equal to the observed proportions of the classes in y). Argument cri in function wdist. cri Logical. If TRUE, fitting information are printed. verb object For the auxiliary functions: A fitted model, output of a call to the main function. For the auxiliary functions: Optional arguments. Not used.

Value

For lwplsrda, lwplslda, lwplsqda: object of class Lwplsrda or Lwplsprobda,

For predict.Lwplsrda, predict.Lwplsprobda:

pred class predicted for each observation
list no list with the neighbors used for each observation to be predicted
list dlist with the distances to the neighbors used for each observation to be predicted
list with the weights attributed to the neighbors used for each observation to be predicted

```
n <- 50 ; p <- 7
Xtrain <- matrix(rnorm(n * p), ncol = p)</pre>
ytrain <- sample(c(1, 4, 10), size = n, replace = TRUE)
m < -4
Xtest <- matrix(rnorm(m * p), ncol = p)</pre>
ytest \leftarrow sample(c(1, 4, 10), size = m, replace = TRUE)
nlvdis <- 5; diss <- "mahal"
h <- 2; k <- 10
nlv <- 2
fm <- lwplsrda(</pre>
    Xtrain, ytrain,
    nlvdis = nlvdis, diss = diss,
    h = h, k = k,
    nlv = nlv
res <- predict(fm, Xtest)</pre>
res$pred
res$listnn
err(res$pred, ytest)
```

lwplsrda_agg 71

```
res <- predict(fm, Xtest, nlv = 0:2)
res$pred</pre>
```

lwplsrda_agg

Aggregation of KNN-LWPLSDA models with different numbers of LVs

Description

Ensemblist method where the predictions are calculated by "averaging" the predictions of KNN-LWPLSDA models built with different numbers of latent variables (LVs).

For instance, if argument nlv is set to nlv = "5:10", the prediction for a new observation is the most occurrent level (vote) over the predictions returned by the models with 5 LVS, 6 LVs, ... 10 LVs, respectively.

```
lwplsrda_agg: use plsrda.lwplslda_agg: use plslda.lwplsqda_agg: use plsqda.
```

Usage

```
lwplsrda_agg(
    Х, у,
    nlvdis, diss = c("eucl", "mahal"),
   h, k,
   nlv,
    cri = 4,
    verb = FALSE
    )
lwplslda_agg(
   nlvdis, diss = c("eucl", "mahal"),
   h, k,
   nlv,
   prior = c("unif", "prop"),
   cri = 4,
    verb = FALSE
lwplsqda_agg(
    Х, у,
    nlvdis, diss = c("eucl", "mahal"),
    h, k,
    nlv,
```

72 lwplsrda_agg

```
prior = c("unif", "prop"),
    cri = 4,
    verb = FALSE
    )

## S3 method for class 'Lwplsrda_agg'
predict(object, X, ...)

## S3 method for class 'Lwplsprobda_agg'
predict(object, X, ...)
```

Arguments

X	For the main functions: Training X-data (n, p) . — For the auxiliary functions: New X-data (m, p) to consider.
У	Training class membership (n) . Note: If y is a factor, it is replaced by a character vector.
nlvdis	The number of LVs to consider in the global PLS used for the dimension reduction before calculating the dissimilarities. If $nlvdis = 0$, there is no dimension reduction.
diss	The type of dissimilarity used for defining the neighbors. Possible values are "eucl" (default; Euclidean distance), "mahal" (Mahalanobis distance), or "correlation". Correlation dissimilarities are calculated by $sqrt(.5*(1-rho))$.
h	A scale scalar defining the shape of the weight function. Lower is h , sharper is the function. See wdist.
k	The number of nearest neighbors to select for each observation to predict.
nlv	A character string such as "5:20" defining the range of the numbers of LVs to consider (here: the models with nb LVS = 5 , 6 ,, 20 are averaged). Syntax such as "10" is also allowed (here: correponds to the single model with 10 LVs).
prior	For lwplslda_agg and lwplsqda_agg: The prior probabilities of the classes. Possible values are "unif" (default; probabilities are set equal for all the classes) or "prop" (probabilities are set equal to the observed proportions of the classes in y).
cri	Argument cri in function wdist.
verb	Logical. If TRUE, fitting information are printed.
object	For the auxiliary functions: A fitted model, output of a call to the main function.
	For the auxiliary functions: Optional arguments. Not used.

Value

 $For \ lwplsrda_agg, \ lwplslda_agg \ and \ lwplsqda_agg: \ object \ of \ class \ lwplsrda_agg, \ lwplslda_agg \ or \ lwplsqda_agg$

For predict.Lwplsrda_agg and predict.Lwplsprobda_agg:

lwplsrda_agg 73

pred	prediction calculated for each observation, which is the most occurent level (vote) over the predictions returned by the models with different numbers of LVS respectively
listnn	list with the neighbors used for each observation to be predicted
listd	list with the distances to the neighbors used for each observation to be predicted
listw	list with the weights attributed to the neighbors used for each observation to be predicted

Note

The first example concerns KNN-LWPLSRDA-AGG. The second example concerns KNN-LWPLSLDA-AGG.

```
## KNN-LWPLSRDA-AGG
n <- 40 ; p <- 7
X <- matrix(rnorm(n * p), ncol = p, byrow = TRUE)</pre>
y \leftarrow sample(c(1, 4, 10), size = n, replace = TRUE)
Xtrain <- X ; ytrain <- y
m <- 5
Xtest \leftarrow X[1:m, ] ; ytest \leftarrow y[1:m]
nlvdis <- 5 ; diss <- "mahal"</pre>
h <- 2 ; k <- 10
nlv <- "2:4"
fm <- lwplsrda_agg(</pre>
    Xtrain, ytrain,
    nlvdis = nlvdis, diss = diss,
    h = h, k = k,
    nlv = nlv)
res <- predict(fm, Xtest)</pre>
res$pred
res$listnn
nlvdis <- 5 ; diss <- "mahal"</pre>
h \leftarrow c(2, Inf)
k <- c(10, 15)
nlv <- c("1:3", "2:4")
pars <- mpars(nlvdis = nlvdis, diss = diss,</pre>
               h = h, k = k, nlv = nlv
pars
res <- gridscore(</pre>
    Xtrain, ytrain, Xtest, ytest,
    score = err,
    fun = lwplsrda_agg,
    pars = pars)
```

74 lwplsrda_agg

```
res
segm \leftarrow segmkf(n = n, K = 3, nrep = 1)
res <- gridcv(
    Xtrain, ytrain,
    segm, score = err,
    fun = lwplsrda_agg,
    pars = pars,
    verb = TRUE)
names(res)
res$val
## KNN-LWPLSLDA-AGG
n <- 40 ; p <- 7
X <- matrix(rnorm(n * p), ncol = p, byrow = TRUE)</pre>
y \leftarrow sample(c(1, 4, 10), size = n, replace = TRUE)
Xtrain <- X ; ytrain <- y</pre>
m <- 5
Xtest \leftarrow X[1:m, ] ; ytest \leftarrow y[1:m]
nlvdis <- 5 ; diss <- "mahal"</pre>
h <- 2 ; k <- 10
nlv <- "2:4"
fm <- lwplslda_agg(</pre>
    Xtrain, ytrain,
    nlvdis = nlvdis, diss = diss,
    h = h, k = k,
    nlv = nlv, prior = "prop")
res <- predict(fm, Xtest)</pre>
res$pred
res$listnn
nlvdis <- 5 ; diss <- "mahal"</pre>
h <- c(2, Inf)
k < -c(10, 15)
nlv <- c("1:3", "2:4")
pars <- mpars(nlvdis = nlvdis, diss = diss,</pre>
               h = h, k = k, nlv = nlv,
               prior = c("unif", "prop"))
pars
res <- gridscore(
    Xtrain, ytrain, Xtest, ytest,
    score = err,
    fun = lwplslda_agg,
    pars = pars)
res
segm \leftarrow segmkf(n = n, K = 3, nrep = 1)
res <- gridcv(
```

lwplsr_agg 75

```
Xtrain, ytrain,
  segm, score = err,
  fun = lwplslda_agg,
  pars = pars,
  verb = TRUE)
names(res)
res$val
```

lwplsr_agg

Aggregation of KNN-LWPLSR models with different numbers of LVs

Description

Ensemblist method where the predictions are calculated by averaging the predictions of KNN-LWPLSR models (lwplsr) built with different numbers of latent variables (LVs).

For instance, if argument nlv is set to nlv = "5:10", the prediction for a new observation is the simple average of the predictions returned by the models with 5 LVS, 6 LVs, ... 10 LVs, respectively.

Usage

```
lwplsr_agg(
    X, Y,
    nlvdis, diss = c("eucl", "mahal"),
    h, k,
    nlv,
    cri = 4,
    verb = FALSE
    )

## S3 method for class 'Lwplsr_agg'
predict(object, X, ...)
```

Arguments

Χ	For the main function: Training X-data (n, p) . — For the auxiliary function: New X-data (m, p) to consider.
Υ	Training Y-data (n, q) .
nlvdis	The number of LVs to consider in the global PLS used for the dimension reduction before calculating the dissimilarities. If $nlvdis = 0$, there is no dimension reduction.
diss	The type of dissimilarity used for defining the neighbors. Possible values are "eucl" (default; Euclidean distance), "mahal" (Mahalanobis distance), or "correlation". Correlation dissimilarities are calculated by sqrt(.5 * (1 - rho)).
h	A scale scalar defining the shape of the weight function. Lower is h , sharper is the function. See wdist.

76 lwplsr_agg

k	(The number of nearest neighbors to select for each observation to predict.
n	nlv	A character string such as " $5:20$ " defining the range of the numbers of LVs to consider (here: the models with nb LVS = 5 , 6 ,, 20 are averaged). Syntax such as " 10 " is also allowed (here: correponds to the single model with 10 LVs).
C	ri	Argument cri in function wdist.
٧	verb	Logical. If TRUE, fitting information are printed.
С	bject	For the auxiliary function: A fitted model, output of a call to the main function.
		For the auxiliary function: Optional arguments. Not used.

Value

For lwplsr_agg: object of class Lwplsr_agg

For predict.Lwplsr_agg:

pred prediction calculated for each observation, which is the most occurent level

(vote) over the predictions returned by the models with different numbers of

LVS respectively

list mt list with the neighbors used for each observation to be predicted

list with the distances to the neighbors used for each observation to be predicted

list with the weights attributed to the neighbors used for each observation to be

predicted

Note

In the examples, gridscore and gricv have been used as there is no sense to use gridscorely and gricvly.

```
## EXAMPLE 1
n < -30; p < -10
Xtrain <- matrix(rnorm(n * p), ncol = p)</pre>
ytrain <- rnorm(n)</pre>
Ytrain <- cbind(ytrain, 100 * ytrain)
Xtest <- matrix(rnorm(m * p), ncol = p)</pre>
ytest <- rnorm(m)</pre>
Ytest <- cbind(ytest, 10 * ytest)
nlvdis <- 5 ; diss <- "mahal"</pre>
h <- 2 ; k <- 10
nlv <- "2:6"
fm <- lwplsr_agg(</pre>
    Xtrain, Ytrain,
    nlvdis = nlvdis, diss = diss,
    h = h, k = k,
    nlv = nlv)
```

lwplsr_agg 77

```
names(fm)
res <- predict(fm, Xtest)</pre>
names(res)
res$pred
msep(res$pred, Ytest)
## EXAMPLE 2
n <- 30 ; p <- 10
Xtrain <- matrix(rnorm(n * p), ncol = p)</pre>
ytrain <- rnorm(n)</pre>
Ytrain <- cbind(ytrain, 100 * ytrain)</pre>
m < -4
Xtest <- matrix(rnorm(m * p), ncol = p)</pre>
ytest <- rnorm(m)</pre>
Ytest <- cbind(ytest, 10 * ytest)
nlvdis <- 5 ; diss <- "mahal"</pre>
h \leftarrow c(2, Inf)
k < -c(10, 20)
nlv <- c("1:3", "2:5")
pars <- mpars(nlvdis = nlvdis, diss = diss,</pre>
    h = h, k = k, nlv = nlv)
pars
res <- gridscore(
    Xtrain, Ytrain, Xtest, Ytest,
    score = msep,
    fun = lwplsr_agg,
    pars = pars)
res
## EXAMPLE 3
n <- 30 ; p <- 10
Xtrain \leftarrow matrix(rnorm(n * p), ncol = p)
ytrain <- rnorm(n)</pre>
Ytrain <- cbind(ytrain, 100 * ytrain)
m < -4
Xtest <- matrix(rnorm(m * p), ncol = p)</pre>
ytest <- rnorm(m)</pre>
Ytest <- cbind(ytest, 10 * ytest)</pre>
K = 3
segm \leftarrow segmkf(n = n, K = K, nrep = 1)
segm
res <- gridcv(
    Xtrain, Ytrain,
    segm, score = msep,
    fun = lwplsr_agg,
    pars = pars,
    verb = TRUE)
res
```

78 matW

m	2	+	W

Between and within covariance matrices

Description

Calculation of within (matW) and between (matB) covariance matrices for classes of observations.

Usage

```
matW(X, y)
matB(X, y)
```

Arguments

X Data (n, p) on which are calculated the covariances.

y Class membership (n, 1).

Details

The denominator in the variance calculations is n.

Value

For (matW):

W within covariance matrix.

Wi list of covariance matrices for each class.

lev classes

ni number of observations in each per class

For (matB):

B between covariance matrix.

ct matrix of class centers.

lev classes

ni number of observations in each per class

mavg 79

Examples

```
n <- 8 ; p <- 3
X <- matrix(rnorm(n * p), ncol = p)
y <- sample(1:2, size = n, replace = TRUE)
X
y
matW(X, y)
matB(X, y)
matW(X, y)$W + matB(X, y)$B
(n - 1) / n * cov(X)</pre>
```

mavg

Smoothing by moving average

Description

Smoothing, by moving average, of the row observations (e.g. spectra) of a dataset.

Usage

```
mavg(X, n = 5)
```

Arguments

X X-data (n, p).

n The number of points (i.e. columns of X) defining the window over wich is calculate each average. The smoothing is calculated for the point at the center of the window. Therefore, n must be an odd integer, and be higher or equal to 3.

Value

A matrix of the transformed data.

```
data(cassav)

X <- cassav$Xtest
headm(X)

Xp <- mavg(X, n = 11)
headm(Xp)

oldpar <- par(mfrow = c(1, 1))
par(mfrow = c(1, 2))</pre>
```

80 mbplsr

```
plotsp(X, main = "Signal")
plotsp(Xp, main = "Corrected signal")
abline(h = 0, lty = 2, col = "grey")
par(oldpar)
```

mbplsr

multi-block PLSR algorithms

Description

Algorithm fitting a multi-block PLS1 or PLS2 model between dependent variables Xlist and responses Y, based on the "Improved kernel algorithm #1" proposed by Dayal and MacGregor (1997).

For weighted versions, see for instance Schaal et al. 2002, Siccard & Sabatier 2006, Kim et al. 2011 and Lesnoff et al. 2020.

Auxiliary functions

transform Calculates the LVs for any new matrix X from the model.

summary returns summary information for the model.

coef Calculates b-coefficients from the model, adjuted for raw data.

predict Calculates the predictions for any new matrix X from the model.

Usage

```
mbplsr(Xlist, Y, blockscaling = TRUE, weights = NULL, nlv,
Xscaling = c("none", "pareto", "sd")[1], Yscaling = c("none", "pareto", "sd")[1])
## S3 method for class 'Mbplsr'
transform(object, X, ..., nlv = NULL)
## S3 method for class 'Mbplsr'
summary(object, X, ...)
## S3 method for class 'Mbplsr'
coef(object, ..., nlv = NULL)
## S3 method for class 'Mbplsr'
predict(object, X, ..., nlv = NULL)
```

Arguments

Xlist	For the main function: list of training X-data (nrows).
X	For the auxiliary functions: list of new X-data, with the same variables than the training X -data.
Υ	Training Y-data (n, q) .

mbplsr 81

blockscaling logical. If TRUE, the scaling factor (computed on the training) is the "norm" of

the block, i.e. the square root of the sum of the variances of each column of the

block.

weights Weights (n, 1) to apply to the training observations. Internally, weights are "nor-

malized" to sum to 1. Default to NULL (weights are set to 1/n).

nlv For the main functions: The number(s) of LVs to calculate. — For the auxiliary

functions: The number(s) of LVs to consider.

Xscaling vector (of length Xlist) of variable scaling for each datablock, among "none"

(mean-centering only), "pareto" (mean-centering and pareto scaling), "sd" (mean-centering and unit variance scaling). If "pareto" or "sd", uncorrected standard

deviation is used.

Yscaling character. variable scaling for the Y-block, among "none" (mean-centering only),

"pareto" (mean-centering and pareto scaling), "sd" (mean-centering and unit variance scaling). If "pareto" or "sd", uncorrected standard deviation is used.

object For the auxiliary functions: A fitted model, output of a call to the main functions.

... For the auxiliary functions: Optional arguments. Not used.

Value

A list of outputs, such as

The X-score matrix (n, nlv).

P The X-loadings matrix (p, nlv).

W The X-loading weights matrix (p, nlv).

The Y-loading weights matrix (C = t(Beta), where Beta is the scores regression

coefficients matrix).

R The PLS projection matrix (p, nlv).

xmeans The list of centering vectors of Xlist.

ymeans The centering vector of Y(q, 1).

xscales The list of *Xlist* variable standard deviations.

yscales The vector of Y variable standard deviations (q, 1).

weights Weights applied to the training observations.

TT the X-score normalization factor.

blockscaling block scaling.

Xnorms "norm" of each block, i.e. the square root of the sum of the variances of each

column of each block, computed on the training, and used as scaling factor

•

U intermediate output.

For transform. Mbplsr: X-scores matrix for new Xlist-data.

For summary. Mbplsr:

82 mbplsr

```
explvarx matrix of explained variances.
```

For coef. Mbplsr:

int matrix (1,nlv) with the intercepts

B matrix (n,nlv) with the coefficients

For predict. Mbplsr:

pred A list of matrices (m, q) with the Y predicted values for the new Xlist-data

References

Andersson, M., 2009. A comparison of nine PLS1 algorithms. Journal of Chemometrics 23, 518-529.

Dayal, B.S., MacGregor, J.F., 1997. Improved PLS algorithms. Journal of Chemometrics 11, 73-85.

Hoskuldsson, A., 1988. PLS regression methods. Journal of Chemometrics 2, 211-228. https://doi.org/10.1002/cem.1180020

Kim, S., Kano, M., Nakagawa, H., Hasebe, S., 2011. Estimation of active pharmaceutical ingredients content using locally weighted partial least squares and statistical wavelength selection. Int. J. Pharm., 421, 269-274.

Lesnoff, M., Metz, M., Roger, J.M., 2020. Comparison of locally weighted PLS strategies for regression and discrimination on agronomic NIR Data. Journal of Chemometrics. e3209. https://onlinelibrary.wiley.com/doi/ab

Rannar, S., Lindgren, F., Geladi, P., Wold, S., 1994. A PLS kernel algorithm for data sets with many variables and fewer objects. Part 1: Theory and algorithm. Journal of Chemometrics 8, 111-125. https://doi.org/10.1002/cem.1180080204

Schaal, S., Atkeson, C., Vijayamakumar, S. 2002. Scalable techniques from nonparametric statistics for the real time robot learning. Applied Intell., 17, 49-60.

Sicard, E. Sabatier, R., 2006. Theoretical framework for local PLS1 regression and application to a rainfall data set. Comput. Stat. Data Anal., 51, 1393-1410.

Tenenhaus, M., 1998. La régression PLS: théorie et pratique. Editions Technip, Paris, France.

Wold, S., Sjostrom, M., Eriksson, I., 2001. PLS-regression: a basic tool for chemometrics. Chem. Int. Lab. Syst., 58, 109-130.

See Also

mbplsr_mbplsda_allsteps function to help determine the optimal number of latent variables, perform a permutation test, calculate model parameters and predict new observations.

```
n <- 10 ; p <- 10
Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- rnorm(n)

m <- 2
Xtest <- matrix(rnorm(m * p), ncol = p)</pre>
```

```
colnames(Xtrain) <- colnames(Xtest) <- paste("v", 1:p, sep = "")

Xtrain
Xtest

blocks <- list(1:2, 4, 6:8)
X1 <- mblocks(Xtrain, blocks = blocks)
X2 <- mblocks(Xtest, blocks = blocks)

nlv <- 3
fm <- mbplsr(Xlist = X1, Y = ytrain, Xscaling = c("sd", "none", "none"),
blockscaling = TRUE, weights = NULL, nlv = nlv)

summary(fm, X1)
coef(fm)
transform(fm, X2)
predict(fm, X2)</pre>
```

mbplsrda

multi-block PLSDA models

Description

Multi-block discrimination (DA) based on PLS.

The training variable y (univariate class membership) is firstly transformed to a dummy table containing nclas columns, where nclas is the number of classes present in y. Each column is a dummy variable (0/1). Then, a PLS2 is implemented on the X-data and the dummy table, returning latent variables (LVs) that are used as dependent variables in a DA model.

- mbplsrda: Usual "PLSDA". A linear regression model predicts the Y-dummy table from the PLS2 LVs. This corresponds to the PLSR2 of the X-data and the Y-dummy table. For a given observation, the final prediction is the class corresponding to the dummy variable for which the prediction is the highest.
- mbplslda and mbplsqda: Probabilistic LDA and QDA are run over the PLS2 LVs, respectively.

Usage

```
mbplsrda(Xlist, y, blockscaling = TRUE, weights = NULL, nlv,
Xscaling = c("none", "pareto", "sd")[1], Yscaling = c("none", "pareto", "sd")[1])
mbplslda(Xlist, y, blockscaling = TRUE, weights = NULL, nlv, prior = c("unif", "prop"),
Xscaling = c("none", "pareto", "sd")[1], Yscaling = c("none", "pareto", "sd")[1])
mbplsqda(Xlist, y, blockscaling = TRUE, weights = NULL, nlv, prior = c("unif", "prop"),
Xscaling = c("none", "pareto", "sd")[1], Yscaling = c("none", "pareto", "sd")[1])
## S3 method for class 'Mbplsrda'
```

```
predict(object, X, ..., nlv = NULL)
## S3 method for class 'Mbplsprobda'
predict(object, X, ..., nlv = NULL)
```

Arguments

For the main functions: list of training X-data (*n*rows). Xlist Χ For the auxiliary functions: list of new X-data (n rows), with the same variables than the training X-data. Training class membership (n). **Note:** If y is a factor, it is replaced by a character У vector. blockscaling logical. If TRUE, the scaling factor (computed on the training) is the "norm" of the block, i.e. the square root of the sum of the variances of each column of the block. weights Weights (n) to apply to the training observations for the PLS2. Internally, weights are "normalized" to sum to 1. Default to NULL (weights are set to 1/n). nlv The number(s) of LVs to calculate. prior The prior probabilities of the classes. Possible values are "unif" (default; probabilities are set equal for all the classes) or "prop" (probabilities are set equal to the observed proportions of the classes in y). vector (of length Xlist) of variable scaling for each datablock, among "none" Xscaling (mean-centering only), "pareto" (mean-centering and pareto scaling), "sd" (meancentering and unit variance scaling). If "pareto" or "sd", uncorrected standard deviation is used. Yscaling character. variable scaling for the Y-block after binary transformation, among "none" (mean-centering only), "pareto" (mean-centering and pareto scaling), "sd" (mean-centering and unit variance scaling). If "pareto" or "sd", uncorrected standard deviation is used.

Value

For mbplsrda:

object

. . .

Ilist with the MB-PLS model: (T): X-scores matrix; (P): X-loading matrix; (R):

The PLS projection matrix (p,nlv); (W): X-loading weights matrix; (C): The

Y-loading weights matrix; (TT): the X-score normalization factor; (xmeans):

the centering vector of X (p,1); (ymeans): the centering vector of Y (q,1);

(weights): vector of observation weights; (blockscaling): block scaling; (Xnorms):

"norm" of each block; (U): intermediate output.

For the auxiliary functions: Optional arguments. Not used.

For the auxiliary functions: A fitted model, output of a call to the main functions.

norm of each block, (b). Intermediate b

lev classes

ni number of observations in each class

For mbplslda, mbplsqda:

list with [[1]] the MB-PLS model: (T): X-scores matrix; (P): X-loading matrix; (R): The PLS projection matrix (p,nlv); (W): X-loading weights matrix; (C): The Y-loading weights matrix; (TT): the X-score normalization factor; (xmeans): the centering vectors of X; (ymeans): the centering vector of Y (q,1); (xscales): the scaling vector of X (p,1); (yscales): the scaling vector of Y (q,1); (weights): vector of observation weights; (blockscaling): block scaling; (Xnorms): "norm" of each block; (U): intermediate output. [[2]] Ida or qda models.

lev classes

ni number of observations in each class

For predict.Mbplsrda, predict.Mbplsprobda:

pred predicted class for each observation

posterior calculated probability of belonging to a class for each observation

Note

The first example concerns MB-PLSDA, and the second one concerns MB-PLS LDA. fm are PLS1 models, and zfm are PLS2 models.

See Also

mbplsr_mbplsda_allsteps function to help determine the optimal number of latent variables, perform a permutation test, calculate model parameters and predict new observations.

```
## EXAMPLE OF MB-PLSDA

n <- 50 ; p <- 8
Xtrain <- matrix(rnorm(n * p), ncol = p)
Xtrainlist <- list(Xtrain[,1:3], Xtrain[,4:8])

ytrain <- sample(c(1, 4, 10), size = n, replace = TRUE)

Xtest <- Xtrain[1:5, ] ; ytest <- ytrain[1:5]
Xtestlist <- list(Xtest[,1:3], Xtest[,4:8])

nlv <- 5
fm <- mbplsrda(Xtrainlist, ytrain, Xscaling = "sd", nlv = nlv)
names(fm)

predict(fm, Xtestlist)
predict(fm, Xtestlist, nlv = 0:2)$pred

pred <- predict(fm, Xtestlist)
pred <- predict(fm, Xtestlist)$pred
err(pred, ytest)

zfm <- fm$fm</pre>
```

```
transform(zfm, Xtestlist)
transform(zfm, Xtestlist, nlv = 1)
summary(zfm, Xtrainlist)
coef(zfm)
coef(zfm, nlv = 0)
coef(zfm, nlv = 2)
## EXAMPLE OF MB-PLS LDA
n <- 50 ; p <- 8
Xtrain <- matrix(rnorm(n * p), ncol = p)</pre>
Xtrainlist <- list(Xtrain[,1:3], Xtrain[,4:8])</pre>
ytrain <- sample(c(1, 4, 10), size = n, replace = TRUE)
Xtest <- Xtrain[1:5, ] ; ytest <- ytrain[1:5]</pre>
Xtestlist <- list(Xtest[,1:3], Xtest[,4:8])</pre>
nlv < -5
fm <- mbplslda(Xtrainlist, ytrain, Xscaling = "none", nlv = nlv)</pre>
predict(fm, Xtestlist)
predict(fm, Xtestlist, nlv = 1:2)$pred
zfm <- fm[[1]][[1]]
class(zfm)
names(zfm)
summary(zfm, Xtrainlist)
transform(zfm, Xtestlist)
coef(zfm)
## EXAMPLE OF MB-PLS QDA
n < -50; p < -8
Xtrain <- matrix(rnorm(n * p), ncol = p)</pre>
Xtrainlist <- list(Xtrain[,1:3], Xtrain[,4:8])</pre>
ytrain <- sample(c(1, 4, 10), size = n, replace = TRUE)
Xtest <- Xtrain[1:5, ] ; ytest <- ytrain[1:5]</pre>
Xtestlist <- list(Xtest[,1:3], Xtest[,4:8])</pre>
nlv <- 5
fm <- mbplsqda(Xtrainlist, ytrain, Xscaling = "none", nlv = nlv)</pre>
predict(fm, Xtestlist)
predict(fm, Xtestlist, nlv = 1:2)$pred
zfm <- fm[[1]][[1]]
class(zfm)
names(zfm)
summary(zfm, Xtrainlist)
transform(zfm, Xtestlist)
coef(zfm)
```

```
mbplsr_mbplsda_allsteps
```

MBPLSR or MBPLSDA analysis steps

Description

Help determine the optimal number of latent variables by cross-validation, perform a permutation test, calculate model parameters and predict new observations, for mbplsr (mbplsr), mbplsrda (mbplsrda), mbplslda (mbplslda) or mbplsqda (mbplsqda) models.

Usage

```
mbplsr_mbplsda_allsteps(Xlist, Xnames = NULL, Xscaling = c("none", "pareto", "sd")[1],
                   Y, Yscaling = c("none", "pareto", "sd")[1], weights = NULL,
                   newXlist = NULL, newXnames = NULL,
                   method = c("mbplsr", "mbplsrda", "mbplslda", "mbplsqda")[1],
                   prior = c("unif", "prop")[1],
                   step = c("nlvtest", "permutation", "model", "prediction")[1],
                   modeloutput = c("scores","loadings","coef","vip").
                   cvmethod = c("kfolds","loo")[1],
                   nbrep = 30,
                   seed = 123,
                   samplingk = NULL,
                   nfolds = 10,
                   npermut = 30,
                   criterion = c("err","rmse")[1],
                   selection = c("localmin", "globalmin", "1std")[1],
                   import = c("R", "ChemFlow", "W4M")[1],
                   outputfilename = NULL)
```

Arguments

Xlist list of training X-data (n,p).

Xnames names of the X-matrices

Xscaling vector of Xlist length. X variable scaling among "none" (mean-centering only), "pareto" (mean-centering and pareto scaling), "sd" (mean-centering and unit variance scaling). If "pareto" or "sd", uncorrected standard deviation is used.

Y Training Y-data (n,q) for plsr models, and (n,1) for plsrda, plslda or plsqda models.

Yscaling Y variable scaling among "none" (mean-centering only), "pareto" (mean-centering

and pareto scaling), "sd" (mean-centering and unit variance scaling). If "pareto"

or "sd", uncorrected standard deviation is used.

weights Weights (n, 1) to apply to the training observations. Internally, weights are "nor-

malized" to sum to 1. Default to NULL (weights are set to 1/n).

newXlist list of new X-data (m, p) to consider.

newXnames names of the newX-matrices

method method to apply among "plsr", "plsrda", "plslda", "plsqda"

prior for plslda or plsqda models: The prior probabilities of the classes. Possible

values are "unif" (default; probabilities are set equal for all the classes) or "prop"

(probabilities are set equal to the observed proportions of the classes in y).

step step of the analysis among "nlvtest" (cross-validation to help determine the

optimal number of latent variables), "permutation" (permutation test), "model" (model calculation), "prediction" (prediction of newX-data or X-data if any))

nlv number of latent variables to test if step is "nlvtest"; number of latent variables

of the model if step is not "nlvtest".

modeloutput if step is "model": outputs among "scores", "loadings", "coef" (regression co-

efficients), "vip" (Variable Importance in Projection; the VIP calculation being based on the proportion of Y-variance explained by the components, as proposed

by Mehmood et al (2012, 2020).)

cvmethod if step is "nlvtest" or "permutation": "kfolds" for k-folds cross-validation, or

"loo" for leave-one-out.

nbrep if step is "nlvtest" and cvmethod is "kfolds": An integer, setting the number of

CV repetitions. Default value is 30. Must me set to 1 if cvmethod is "loo"

seed if step is "nlvtest" and cymethod is "kfolds", or if step is "permutation: a nu-

meric. Seed used for the repeated resampling

samplingk A vector of length n. The elements are the values of a qualitative variable used

for stratified partition creation. If NULL, the first observation is set in the first

fold, the second observation in the second fold, etc...

nfolds if cvmethod is "kfolds". An integer, setting the number of partitions to create.

Default value is 10.

npermut if step is "permutation": An integer, setting the number of Y-Block with permu-

tated responses to create. Default value is 30.

criterion if step is "nlvtest" or "permutation" and method is "plsrda", "plslda" or "plsqda":

optimisation criterion among "rmse" and "err" (for classification error rate)))

selection if step is "nlvtest": a character indicating the selection method to use to choose

the optimal combination of components, among "localmin", "globalmin", "1std". If "localmin": the optimal combination corresponds to the first local minimum of the mean CV rmse or error rate. If "globalmin": the optimal combination corresponds to the minimum mean CV rmse or error rate. If "1std" (one standard error rule): it corresponds to the first combination after which the mean cross-

validated rmse or error rate does not decrease significantly.

import

If "R", X and Y are in the global environment, and the observation names are in rownames. If "ChemFlow", X and Y are tabulated tables (.txt), and the observation names are in the first column. If "W4M", X and Y are tabulated tables (.txt), and the observation names are in the headers of X, and in the first column of Y.

outputfilename character: If not NULL, name of the tabular file, in which the function outputs have to be written.)

Value

If step is "nlvtest": table with rmsecv or cross-validated classification error rates. The suggested optimal number of latent variables is indicated by the binary "optimum" variable.

If step is "permutation": table with the dissimilarity between the original and the permutated Yblock, and the rmsecv or cross-validated classification error rates obtained with the permutated Y-block by the model and the given number of latent variables.

If step is "model": tables of scores, loadings, regression coefficients, and vip values, depending of the "modeloutput" parameter.

If step is "prediction": table of predicted scores and predicted classes or values.

```
n <- 50 ; p <- 8
Xtrain <- matrix(rnorm(n * p), ncol = p)</pre>
colnames(Xtrain) <- paste0("V",1:p)</pre>
ytrain <- sample(c(1, 4, 10), size = n, replace = TRUE)
Xtest <- Xtrain[1:5, ] ; ytest <- ytrain[1:5]</pre>
Xtrainlist <- list(Xtrain[,1:3], Xtrain[,4:8])</pre>
Xtestlist <- list(Xtest[,1:3], Xtest[,4:8])</pre>
nlv < -5
resnlvtestmbplsrda <- mbplsr_mbplsda_allsteps(Xlist = Xtrainlist,
                    Xnames = NULL, Xscaling = c("none", "pareto", "sd")[1],
                    Y = ytrain, Yscaling = "none", weights = NULL,
                    newXlist = Xtestlist, newXnames = NULL,
                    method = c("mbplsr", "mbplsrda", "mbplslda", "mbplsqda")[2],
                    prior = c("unif", "prop")[1],
                    step = c("nlvtest", "permutation", "model", "prediction")[1],
                    modeloutput = c("scores", "loadings", "coef", "vip"),
                    cvmethod = c("kfolds","loo")[2],
                    nbrep = 1,
                    seed = 123,
```

```
samplingk = NULL,
                   nfolds = 10,
                   npermut = 5,
                   criterion = c("err", "rmse")[1],
                   selection = c("localmin", "globalmin", "1std")[1],
                   outputfilename = NULL)
respermutationmbplsrda <- mbplsr_mbplsda_allsteps(Xlist = Xtrainlist,</pre>
                   Xnames = NULL, Xscaling = c("none", "pareto", "sd")[1],
                   Y = ytrain, Yscaling = "none", weights = NULL,
                   newXlist = Xtestlist, newXnames = NULL,
                   method = c("mbplsr", "mbplsrda", "mbplslda", "mbplsqda")[2],
                   prior = c("unif", "prop")[1],
                   step = c("nlvtest", "permutation", "model", "prediction")[2],
                   nlv = 1,
                   modeloutput = c("scores", "loadings", "coef", "vip"),
                   cvmethod = c("kfolds","loo")[2],
                   nbrep = 1,
                   seed = 123,
                   samplingk = NULL,
                   nfolds = 10,
                   npermut = 5,
                   criterion = c("err", "rmse")[1],
                   selection = c("localmin", "globalmin", "1std")[1],
                   outputfilename = NULL)
plotxy(respermutationmbplsrda, pch=16)
abline (h = respermutationmbplsrda[respermutationmbplsrda[,"permut_dyssimilarity"]==0,"res_permut"])
resmodelmbplsrda <- mbplsr_mbplsda_allsteps(Xlist = Xtrainlist,</pre>
                   Xnames = NULL, Xscaling = c("none", "pareto", "sd")[1],
                   Y = ytrain, Yscaling = "none", weights = NULL,
                   newXlist = Xtestlist, newXnames = NULL,
                   method = c("mbplsr", "mbplsrda", "mbplslda", "mbplsqda")[2],
                   prior = c("unif", "prop")[1],
                   step = c("nlvtest", "permutation", "model", "prediction")[3],
                   nlv = 1,
                   modeloutput = c("scores", "loadings", "coef", "vip"),
                   cvmethod = c("kfolds","loo")[2],
                   nbrep = 1,
                   seed = 123,
                   samplingk = NULL,
                   nfolds = 10,
```

mse 91

```
npermut = 5,
                   criterion = c("err","rmse")[1],
                   selection = c("localmin", "globalmin", "1std")[1],
                   outputfilename = NULL)
resmodelmbplsrda$scores
resmodelmbplsrda$loadings
resmodelmbplsrda$coef
resmodelmbplsrda$vip
respredictionmbplsrda <- mbplsr_mbplsda_allsteps(Xlist = Xtrainlist,</pre>
                   Xnames = NULL, Xscaling = c("none", "pareto", "sd")[1],
                   Y = ytrain, Yscaling = "none", weights = NULL,
                   newXlist = Xtestlist, newXnames = NULL,
                   method = c("mbplsr", "mbplsrda", "mbplslda", "mbplsqda")[2],
                   prior = c("unif", "prop")[1],
                   step = c("nlvtest", "permutation", "model", "prediction")[4],
                   nlv = 1,
                   modeloutput = c("scores","loadings","coef","vip"),
                   cvmethod = c("kfolds","loo")[2],
                   nbrep = 1,
                   seed = 123,
                   samplingk = NULL,
                   nfolds = 10,
                   npermut = 5,
                   criterion = c("err", "rmse")[1],
                   selection = c("localmin", "globalmin", "1std")[1],
                   outputfilename = NULL)
```

mse

Residuals and prediction error rates

Description

Residuals and prediction error rates (MSEP, SEP, etc. or classification error rate) for models with quantitative or qualitative responses.

Usage

```
residreg(pred, Y)
residcla(pred, y)
```

92 mse

```
msep(pred, Y)
rmsep(pred, Y)
sep(pred, Y)
bias(pred, Y)
cor2(pred, Y)
r2(pred, Y)
rpd(pred, Y)
rpdr(pred, Y)
mse(pred, Y, digits = 3)
err(pred, y)
```

Arguments

pred Prediction (m, q); output of a function predict.

Y Observed response (m, q). y Observed response (m, 1).

digits Number of digits for the numerical outputs.

Details

The rate R2 is calculated by R2 = 1 - MSEP(current model)/MSEP(null model), where $MSEP = Sum((y_i - pred_i)^2)/n$ and "null model" is the overall mean of y. For predictions over CV or Test sets, and/or for non linear models, it can be different from the square of the correlation coefficient (cor2) between the observed values and the predictions.

Function sep computes the SEP, referred to as "corrected SEP" (SEP_c) in Bellon et al. 2010. SEP is the standard deviation of the residuals. There is the relation: $MSEP = BIAS^2 + SEP^2$.

Function rpd computes the ratio of the "deviation" (sqrt of the mean of the squared residuals for the null model when it is defined by the simple average) to the "performance" (sqrt of the mean of the squared residuals for the current model, i.e. RMSEP), i.e. RPD = SD/RMSEP = RMSEP(nullmodel)/RMSEP (see eg. Bellon et al. 2010).

Function rpdr computes a robust RPD.

Value

Residuals or prediction error rates.

References

Bellon-Maurel, V., Fernandez-Ahumada, E., Palagos, B., Roger, J.-M., McBratney, A., 2010. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends in Analytical Chemistry 29, 1073-1081. https://doi.org/10.1016/j.trac.2010.05.006

octane 93

Examples

```
## EXAMPLE 1
n < -6; p < -4
Xtrain <- matrix(rnorm(n * p), ncol = p)</pre>
ytrain <- rnorm(n)</pre>
Ytrain <- cbind(y1 = ytrain, y2 = 100 * ytrain)
m < -3
Xtest <- Xtrain[1:m, , drop = FALSE]</pre>
Ytest <- Ytrain[1:m, , drop = FALSE]</pre>
ytest <- Ytest[1:m, 1]</pre>
nlv <- 3
fm <- plskern(Xtrain, Ytrain, nlv = nlv)</pre>
pred <- predict(fm, Xtest)$pred</pre>
residreg(pred, Ytest)
msep(pred, Ytest)
rmsep(pred, Ytest)
sep(pred, Ytest)
bias(pred, Ytest)
cor2(pred, Ytest)
r2(pred, Ytest)
rpd(pred, Ytest)
rpdr(pred, Ytest)
mse(pred, Ytest, digits = 3)
## EXAMPLE 2
n <- 50 ; p <- 8
Xtrain <- matrix(rnorm(n * p), ncol = p)</pre>
ytrain <- sample(c(1, 4, 10), size = n, replace = TRUE)</pre>
Xtest <- Xtrain[1:5, ]</pre>
ytest <- ytrain[1:5]</pre>
nlv <- 5
fm <- plsrda(Xtrain, ytrain, nlv = nlv)</pre>
pred <- predict(fm, Xtest)$pred</pre>
residcla(pred, ytest)
err(pred, ytest)
```

octane

octane

Description

Octane dataset.

Near infrared (NIR) spectra (absorbance) of n = 39 gasoline samples over p = 226 wavelengths (1102 nm to 1552 nm, step = 2 nm).

Samples 25, 26, and 36-39 contain added alcohol (outliers).

94 odis

Usage

```
data(octane)
```

Format

A list with 1 component: the matrix X with 39 samples and 226 variables.

Source

K.H. Esbensen, S. Schoenkopf and T. Midtgaard Multivariate Analysis in Practice, Trondheim, Norway: Camo, 1994.

Todorov, V. 2020. rrcov: Robust Location and Scatter Estimation and Robust Multivariate Analysis with High Breakdown. R Package version 1.5-5. https://cran.r-project.org/.

References

- M. Hubert, P. J. Rousseeuw, K. Vanden Branden (2005), ROBPCA: a new approach to robust principal components analysis, Technometrics, 47, 64-79.
- P. J. Rousseeuw, M. Debruyne, S. Engelen and M. Hubert (2006), Robustness and Outlier Detection in Chemometrics, Critical Reviews in Analytical Chemistry, 36(3-4), 221-242.

Examples

```
data(octane)

X <- octane$X
headm(X)

plotsp(X, xlab = "Wawelength", ylab = "Absorbance")
plotsp(X[c(25:26, 36:39), ], add = TRUE, col = "red")</pre>
```

odis

Orthogonal distances from a PCA or PLS score space

Description

odis calculates the orthogonal distances (OD = "X-residuals") for a PCA or PLS model. OD is the Euclidean distance of a row observation to its projection to the score plan (see e.g. Hubert et al. 2005, Van Branden & Hubert 2005, p. 66; Varmuza & Filzmoser, 2009, p. 79).

A distance cutoff is computed using a moment estimation of the parameters of a Chi-squared distribution for OD^2 (see Nomikos & MacGregor 1995, and Pomerantzev 2008). In the function output, column dstand is a standardized distance defined as OD/cutoff. A value dstand > 1 can be considered as extreme.

The cutoff for detecting extreme OD values is computed using a moment estimation of a Chisquared distribution for the squared distance. odis 95

Usage

```
odis(
   object, Xtrain, X = NULL,
   nlv = NULL,
   rob = TRUE, alpha = .01
)
```

Arguments

object A fitted model, output of a call to a fitting function.

Xtrain Training X-data that was used to fit the model.

X New X-data.

Number of components (PCs or LVs) to consider.

rob Logical. If TRUE, the moment estimation of the distance cutoff is robustified.

This can be recommended after robust PCA or PLS on small data sets containing

extreme values.

alpha Risk-I level for defining the cutoff detecting extreme values.

Value

res.train matrix with distance and a standardized distance calculated for Xtrain.

res matrix with distance and a standardized distance calculated for X.

cutoff distance cutoff computed using a moment estimation of the parameters of a Chisquared distribution for OD^2.

References

M. Hubert, P. J. Rousseeuw, K. Vanden Branden (2005). ROBPCA: a new approach to robust principal components analysis. Technometrics, 47, 64-79.

Nomikos, P., MacGregor, J.F., 1995. Multivariate SPC Charts for Monitoring Batch Processes. null 37, 41-59. https://doi.org/10.1080/00401706.1995.10485888

Pomerantsev, A.L., 2008. Acceptance areas for multivariate classification derived by projection methods. Journal of Chemometrics 22, 601-609. https://doi.org/10.1002/cem.1147

K. Vanden Branden, M. Hubert (2005). Robuts classification in high dimension based on the SIMCA method. Chem. Lab. Int. Syst, 79, 10-21.

K. Varmuza, P. Filzmoser (2009). Introduction to multivariate statistical analysis in chemometrics. CRC Press, Boca Raton.

```
n <- 6 ; p <- 4
Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- rnorm(n)
Xtest <- Xtrain[1:3, , drop = FALSE]
nlv <- 3</pre>
```

96 orthog

```
fm <- pcasvd(Xtrain, nlv = nlv)
odis(fm, Xtrain)
odis(fm, Xtrain, nlv = 2)
odis(fm, Xtrain, X = Xtest, nlv = 2)</pre>
```

orthog

Orthogonalization of a matrix to another matrix

Description

Function orthogonalizes a matrix Y to a matrix X. The row observations can be weighted. The function uses function 1m.

Usage

```
orthog(X, Y, weights = NULL)
```

Arguments

X A nxp matrix or data frame.

Y A nxq matrix or data frame to orthogonalize to X.

weights A vector of length n defining a priori weights to apply to the observations. In-

ternally, weights are "normalized" to sum to 1. Default to NULL (weights are set

to 1/n).

Value

Y The Y matrix orthogonalized to X.

b The regression coefficients used for orthogonalization.

```
n <- 8 ; p <- 3
set.seed(1)
X <- matrix(rnorm(n * p, mean = 10), ncol = p, byrow = TRUE)
Y <- matrix(rnorm(n * 2, mean = 10), ncol = 2, byrow = TRUE)
colnames(Y) <- c("y1", "y2")
set.seed(NULL)
X
Y
res <- orthog(X, Y)
res$Y
crossprod(res$Y, X)
res$b</pre>
```

ozone 97

```
# Same as:
fm <- lm(Y ~ X)
Y - fm$fitted.values
fm$coef

#### WITH WEIGHTS

w <- 1:n
fm <- lm(Y ~ X, weights = w)
Y - fm$fitted.values
fm$coef

res <- orthog(X, Y, weights = w)
res$Y
t(res$Y)
res$b</pre>
```

ozone

ozone

Description

Los Angeles ozone pollution data in 1976 (sources: Breiman & Friedman 1985, Leisch & Dimitriadou 2020).

Usage

```
data(ozone)
```

Format

A list with 1 component: the matrix X with 366 observations, 13 variables. The variable to predict is V4.

- V1 Month: 1 = January, ..., 12 = December
- V2 Day of month
- V3 Day of week: 1 = Monday, ..., 7 = Sunday
- V4 Daily maximum one-hour-average ozone reading
- V5 500 millibar pressure height (m) measured at Vandenberg AFB
- V6 Wind speed (mph) at Los Angeles International Airport (LAX)
- V7 Humidity (%) at LAX
- V8 Temperature (degrees F) measured at Sandburg, CA
- V9 Temperature (degrees F) measured at El Monte, CA
- V10 Inversion base height (feet) at LAX
- V11 Pressure gradient (mm Hg) from LAX to Daggett, CA
- V12 Inversion base temperature (degrees F) at LAX
- V13 Visibility (miles) measured at LAX

98 pcasvd

Source

Breiman L., Friedman J.H. 1985. Estimating optimal transformations for multiple regression and correlation, JASA, 80, pp. 580-598.

Leisch, F. and Dimitriadou, E. (2010). mlbench: Machine Learning Benchmark Problems. R package version 1.1-6. https://cran.r-project.org/.

Examples

```
data(ozone)
z <- ozone$X
head(z)
plotxna(z)</pre>
```

pcasvd

PCA algorithms

Description

Algorithms fitting a centered weighted PCA of a matrix X.

Noting D a (n, n) diagonal matrix of weights for the observations (rows of X), the functions consist in:

- pcasvd: SVD factorization of $D^{(1/2)} * X$, using function svd.
- pcaeigen: Eigen factorization of X' * D * X, using function eigen.
- pcaeigenk: Eigen factorization of $D^{(1/2)} * X * X'D^{(1/2)}$, using function eigen. This is the "kernel cross-product trick" version of the PCA algorithm (Wu et al. 1997). For wide matrices (n << p) and n not too large, this algorithm can be much faster than the others.
- pcanipals: Eigen factorization of X' * D * X using NIPALS.
- pcanipalsna: Eigen factorization of X'*D*X using NIPALS allowing missing data in X.
- pcasph: Robust spherical PCA (Locantore et al. 1990, Maronna 2005, Daszykowski et al. 2007).

Function pcanipalsna accepts missing data (NAs) in X, unlike the other functions. The part of pcanipalsna accounting specifically for missing missing data is based on the efficient code of K. Wright in the R package nipals (https://cran.r-project.org/web/packages/nipals/index.html).

Gram-Schmidt orthogonalization in the NIPALS algorithm

The PCA NIPALS is known to generate a loss of orthogonality of the PCs (due to the accumulation of rounding errors in the successive iterations), particularly for large matrices or with high degrees of column collinearity.

With missing data, orthogonality of loadings is not satisfied neither.

An approach for coming back to orthogonality (PCs and loadings) is the iterative classical Gram-Schmidt orthogonalization (Lingen 2000, Andrecut 2009, and vignette of R package nipals), referred to as the iterative CGS. It consists in adding a CGS orthogonalization step in each iteration of the PCs and loadings calculations.

pcasvd 99

For the case with missing data, the iterative CGS does not insure that the orthogonalized PCs are centered.

Auxiliary function

transform Calculates the PCs for any new matrix X from the model. summary returns summary information for the model.

Usage

```
pcasvd(X, weights = NULL, nlv)

pcaeigen(X, weights = NULL, nlv)

pcaeigenk(X,weights = NULL, nlv)

pcanipals(X, weights = NULL, nlv,
    gs = TRUE,
    tol = .Machine$double.eps^0.5, maxit = 200)

pcanipalsna(X, nlv,
    gs = TRUE,
    tol = .Machine$double.eps^0.5, maxit = 200)

pcasph(X, weights = NULL, nlv)

## S3 method for class 'Pca'
transform(object, X, ..., nlv = NULL)

## S3 method for class 'Pca'
summary(object, X, ...)
```

Arguments

Χ	For the main functions and auxiliary function summary: Training X-data (n, p) . — For the other auxiliary functions: New X-data (m, p) to consider.
weights	Weights $(n,1)$ to apply to the training observations. Internally, weights are "normalized" to sum to 1. Default to NULL (weights are set to $1/n$).
nlv	The number of PCs to calculate.
object	A fitted model, output of a call to the main functions.
	Optional arguments.
Specific for the NIPALS algorithm	

Specific for the NIPALS algorithm

gs	Logical indicating if a Gram-Schmidt orthogonalization is implemented or not (default to TRUE).
tol	Tolerance for testing convergence of the NIPALS iterations for each PC.
maxit	Maximum number of NIPALS iterations for each PC

100 pcasvd

Value

A list of outputs, such as:

T	The score matrix (n, nlv) .
P	The loadings matrix (p, nlv) .
R	The projection matrix $(= P) (p, nlv)$.
SV	The singular values $(min(n, p), 1)$ except for NIPALS = $(nlv, 1)$.
eig	The eigenvalues (= sv^2) $(min(n, p), 1)$ except for NIPALS = $(nlv, 1)$.
xmeans	The centering vector of $X(p, 1)$.
niter	Numbers of iterations of the NIPALS.
conv	Logical indicating if the NIPALS converged before reaching the maximal num-

References

ber of iterations.

Andrecut, M., 2009. Parallel GPU Implementation of Iterative PCA Algorithms. Journal of Computational Biology 16, 1593-1599. https://doi.org/10.1089/cmb.2008.0221

Gabriel, R. K., 2002. Le biplot - Outil d'exploration de données multidimensionnelles. Journal de la Société Française de la Statistique, 143, 5-55.

Lingen, F.J., 2000. Efficient Gram-Schmidt orthonormalisation on parallel computers. Communications in Numerical Methods in Engineering 16, 57-66. https://doi.org/10.1002/(SICI)1099-0887(200001)16:1<57::AID-CNM320>3.0.CO;2-I

Tenenhaus, M., 1998. La régression PLS: théorie et pratique. Editions Technip, Paris, France.

Wright, K., 2018. Package nipals: Principal Components Analysis using NIPALS with Gram-Schmidt Orthogonalization. https://cran.r-project.org/

Wu, W., Massart, D.L., de Jong, S., 1997. The kernel PCA algorithms for wide data. Part I: Theory and algorithms. Chemometrics and Intelligent Laboratory Systems 36, 165-172. https://doi.org/10.1016/S0169-7439(97)00010-5

For Spherical PCA:

Daszykowski, M., Kaczmarek, K., Vander Heyden, Y., Walczak, B., 2007. Robust statistics in data analysis - A review. Chemometrics and Intelligent Laboratory Systems 85, 203-219. https://doi.org/10.1016/j.chemolab.2006

Locantore N., Marron J.S., Simpson D.G., Tripoli N., Zhang J.T., Cohen K.L. Robust principal component analysis for functional data, Test 8 (1999) 1-7

Maronna, R., 2005. Principal components and orthogonal regression based on robust scales, Technometrics, 47:3, 264-273, DOI: 10.1198/004017005000000166

```
n <- 6 ; p <- 4
Xtrain <- matrix(rnorm(n * p), nrow = n)
s <- c(3, 4, 7, 10, 11, 15, 21:24)
zX <- replace(Xtrain, s, NA)
Xtrain
zX</pre>
```

pinv 101

```
m <- 2
Xtest <- matrix(rnorm(m * p), nrow = m)</pre>
pcasvd(Xtrain, nlv = 3)
pcaeigen(Xtrain, nlv = 3)
pcaeigenk(Xtrain, nlv = 3)
pcanipals(Xtrain, nlv = 3)
pcanipalsna(Xtrain, nlv = 3)
pcanipalsna(zX, nlv = 3)
fm <- pcaeigen(Xtrain, nlv = 3)</pre>
fm$T
transform(fm, Xtest)
transform(fm, Xtest, nlv = 2)
pcaeigen(Xtrain, nlv = 3)T
pcaeigen(Xtrain, nlv = 3, weights = 1:n)$T
Ttrain <- fm$T
Ttest <- transform(fm, Xtest)</pre>
T <- rbind(Ttrain, Ttest)
group <- c(rep("Training", nrow(Ttrain)), rep("Test", nrow(Ttest)))</pre>
i <- 1
plotxy(T[, i:(i+1)], group = group, pch = 16, zeroes = TRUE, cex = 1.3, main = "scores")
plotxy(fm$P, zeroes = TRUE, label = TRUE, cex = 2, col = "red3", main ="loadings")
summary(fm, Xtrain)
res <- summary(fm, Xtrain)</pre>
plotxy(res$cor.circle, zeroes = TRUE, label = TRUE, cex = 2, col = "red3",
    circle = TRUE, ylim = c(-1, 1))
```

pinv

Moore-Penrose pseudo-inverse of a matrix

Description

Calculation of the Moore-Penrose (MP) pseudo-inverse of a matrix X.

Usage

```
pinv(X, tol = sqrt(.Machine$double.eps))
```

Arguments

```
X X-data (n, p).
```

tol A relative tolerance to detect zero singular values.

102 plotjit

Value

Xplus The MP pseudo-inverse. sv singular values.

Examples

```
n <- 7 ; p <- 4
X <- matrix(rnorm(n * p), ncol = p)
y <- rnorm(n)
pinv(X)
tcrossprod(pinv(X)$Xplus, t(y))
lm(y ~ X - 1)</pre>
```

plotjit

Jittered plot

Description

Plot comparing classes with jittered points (random noise is added to the x-axis values for avoiding overplotting).

Usage

```
plotjit(x, y, group = NULL,
   jit = 1, col = NULL, alpha.f = .8,
   legend = TRUE, legend.title = NULL, ncol = 1, med = TRUE,
   ...)
```

Arguments

defining the class membership of the observations (x-axis).
defining the variable to plot (y-axis).
defining groups of observations to be plotted with different L).
ttering magnitude. Default to 1.
opacity of the points in the graphics; typically in [0,1]. See
f colors (of length equal to the number of classes or groups), of the points.
oups. Logical indicationg is a legend is drawn for groups
cationg a title for the legend.

plotscore 103

ncol	Number of columns drawn in the legend box.
med	Logical. If TRUE (default), the median of each class is plotted.
	Other arguments to pass in plot.

Value

Jittered plot.

Examples

```
n <- 500
x <- c(rep("A", n), rep("B", n))
y <- c(rnorm(n), rnorm(n, mean = 5, sd = 3))
group <- sample(1:2, size = 2 * n, replace = TRUE)

plotjit(x, y, pch = 16, jit = .5, alpha.f = .5)

plotjit(x, y, pch = 16, jit = .5, alpha.f = .5,
    group = group)</pre>
```

plotscore

Plotting errors rates

Description

Plotting scores of prediction errors (error rates).

Usage

```
plotscore(x, y, group = NULL,
     col = NULL, steplab = 2, legend = TRUE, legend.title = NULL, ncol = 1, ...)
```

Arguments

Χ	Horizontal axis vector (n) .
У	Vertical axis vector (n)
group	Groups of data (n) to be plotted with different colors.
col	A color, or a vector of colors (of length equal to the number of groups), defining the color(s) of the groups.
steplab	A step for the horizontal axis. Can be NULL (automatic step).
legend	Only if there are groups. Logical indicationg is a legend is drawn for groups (Default to FALSE).
legend.title	Character string indicationg a title for the legend.
ncol	Number of columns drawn in the legend box.
	Other arguments to pass in function plot.

104 plotsp

Value

A plot.

Examples

```
n < -50; p < -20
Xtrain <- matrix(rnorm(n * p), ncol = p, byrow = TRUE)</pre>
ytrain <- rnorm(n)</pre>
Ytrain <- cbind(ytrain, 10 * rnorm(n))</pre>
m < -3
Xtest <- Xtrain[1:m, ]</pre>
Ytest <- Ytrain[1:m, ] ; ytest <- Ytest[, 1]</pre>
nlv <- 15
res <- gridscorelv(
    Xtrain, ytrain, Xtest, ytest,
    score = msep,
    fun = plskern,
    nlv = 0:nlv, verb = TRUE
plotscore(res$nlv, res$y1,
          main = "MSEP", xlab = "Nb. LVs", ylab = "Value")
nlvdis <- 5
h \leftarrow c(1, Inf)
k < -c(10, 20)
nlv <- 15
pars <- mpars(nlvdis = nlvdis, diss = "mahal",</pre>
              h = h, k = k
res <- gridscorelv(</pre>
    Xtrain, Ytrain, Xtest, Ytest,
    score = msep,
    fun = lwplsr,
    nlv = 0:nlv, pars = pars, verb = TRUE)
headm(res)
group <- paste("h=", res$h, " k=", res$k, sep = "")</pre>
plotscore(res$nlv, res$y1, group = group,
          main = "MSEP", xlab = "Nb. LVs", ylab = "Value")
```

plotsp

Plotting spectra

Description

plotsp plots lines corresponding to the row observations (e.g. spectra) of a data set.

plotsp1 plots only one observation per plot (e.g. spectrum by spectrum) by scrolling the rows. After running a plotsp1 command, the plots are printed successively by pushing the R console "entry button", and stopped by entering any character in the R console.

plotsp 105

Usage

```
plotsp(X,
   type = "1", col = NULL, zeroes = FALSE, labels = FALSE,
   add = FALSE,
   ...)
plotsp1(X, col = NULL, zeroes = FALSE, ...)
```

Arguments

Χ	Data (n, p) to plot.
type	1-character string giving the type of plot desired. Default value to "1" (lines). See plot.default for other options.
col	A color, or a vector of colors (of length n), defining the color(s) of the lines representing the rows.
zeroes	Logical indicationg if an horizontal line is drawn at coordonates $(0,0)$ (Default to FALSE).
labels	Logical indicating if the row names of X are plotted (default to FALSE).
add	Logical defining if the frame of the plot is plotted (add = FALSE; default) or not (add = TRUE). This allows to add new observations to a plot without red-building the frame.
	Other arguments to pass in functions plot or lines

Value

A plot (see examples).

Note

```
For the first example, see ?hcl.colors and ?hcl.pals, and try with col <- hcl.colors(n = n, alpha = 1, rev = FALSE, palette = "Green-Orange") col <- terrain.colors(n, rev = FALSE) col <- rainbow(n, rev = FALSE, alpha = .2)
```

The second example is with plotsp1 (Scrolling plot of PCA loadings). After running the code, type Enter in the R console for starting the scrolling, and type any character in the R console

```
## EXAMPLE 1
data(cassav)

X <- cassav$Xtest
n <- nrow(X)
plotsp(X)</pre>
```

106 plotxna

```
plotsp(X, col = "grey")
plotsp(X, col = "lightblue",
  xlim = c(500, 1500),
  xlab = "Wawelength (nm)", ylab = "Absorbance")
col <- hcl.colors(n = n, alpha = 1, rev = FALSE, palette = "Grays")</pre>
plotsp(X, col = col)
plotsp(X, col = "grey")
plotsp(X[23, , drop = FALSE], lwd = 2, add = TRUE)
plotsp(X[c(23, 16), ], lwd = 2, add = TRUE)
plotsp(X[5, , drop = FALSE], labels = TRUE)
plotsp(X[c(5, 61), ], labels = TRUE)
col <- hcl.colors(n = n, alpha = 1, rev = FALSE, palette = "Grays")</pre>
plotsp(X, col = col)
plotsp(X[5, , drop = FALSE], col = "red", lwd = 2, add = TRUE, labels = TRUE)
## EXAMPLE 2 (Scrolling plot of PCA loadings)
data(cassav)
X <- cassav$Xtest
fm \leftarrow pcaeigenk(X, nlv = 20)
P <- fm$P
plotsp1(t(P), ylab = "Value")
```

plotxna

Plotting Missing Data in a Matrix

Description

Plot the location of missing data in a matrix.

Usage

```
plotxna(X, pch = 16, col = "red", grid = FALSE, asp = 0, ...)
```

Arguments

Χ	A data set (nxp) .
pch	Type of point. See points.
col	A color defining the color of the points.
grid	Logical. If TRUE, a grid is plotted for representing the matrix rows an columns. Default to FALSE.

plotxy 107

Scalar. Giving the aspect ratio y/x. The value asp = 0 is the default in plot. default (no constraints on the ratio). See plot. default.

... Other arguments to pass in functions plot.

Value

A plot.

Examples

```
data(octane)
X <- octane$X
n <- nrow(X)
p <- ncol(X)
N <- n * p

s <- sample(1:N, size = 50)
zX <- replace(X, s, NA)
plotxna(zX)
plotxna(zX, grid = TRUE, asp = 0)</pre>
```

plotxy

2-d scatter plot

Description

2-dimension scatter plot.

Usage

```
plotxy(X, group = NULL,
    asp = 0, col = NULL, alpha.f = .8,
    zeroes = FALSE, circle = FALSE, ellipse = FALSE,
    labels = FALSE,
    legend = TRUE, legend.title = NULL, ncol = 1,
    ...)
```

Arguments

Χ	Data (n, p) to plot. If $p > 2$, only the first two columns are considered.
group	Groups of observations (n) to be plotted with different colors (default to NULL).
asp	Scalar. Giving the aspect ratio y/x . The value $asp = 0$ is the default in plot. default (no constraints on the ratio). See plot. default.
col	A color, or a vector of colors (of length equal to the number of groups), defining the color(s) of the groups.

108 plotxy

alpha.f	Scalar modifying the opacity of the points in the graphics; typically in $[0,1]$. See adjustcolor.
zeroes	Logical indicationg if an horizontal and vertical lines are drawn at coordonates $(0,0)$ (Default to FALSE).
circle	Not still working. Logical indicating if a correlation circle is plotted (default to FALSE).
ellipse	Logical indicating if a Gaussian ellipse is plotted (default to FALSE). If there are groups, an ellipse is drawn for each group.
labels	Logical indicating if the row names of X (instead of points) are plotted (default to FALSE).
legend	Only if there are groups. Logical indicationg is a legend is drawn for groups (Default to FALSE).
legend.title	Character string indicationg a title for the legend.
ncol	Number of columns drawn in the legend box.
	Other arguments to pass in functions plot, points, axis and text.

Value

A plot.

plskern 109

plskern

PLSR algorithms

Description

Algorithms fitting a PLS1 or PLS2 model between dependent variables X and responses Y.

- plskern: "Improved kernel algorithm #1" proposed by Dayal and MacGregor (1997). This algorithm is stable and fast (Andersson 2009), and returns the same results as the NIPALS.
- plsnipals: NIPALS algorithm (e.g. Tenenhaus 1998, Wold 2002). In the function, the usual PLS2 NIPALS iterative is replaced by a direct calculation of the weights vector w by SVD decomposition of matrix X'Y (Hoskuldsson 1988 p.213).
- plsrannar: Kernel algorithm proposed by Rannar et al. (1994) for "wide" matrices, i.e. with low number of rows and very large number of columns (p > n; e.g. p = 20000). In such a situation, this algorithm is faster than the others (but it becomes much slower in other situations). If the algorithm converges, it returns the same results as the NIPALS (Note: discrepancies can be observed if too many PLS components are requested compared to the low number of observations).

For weighted versions, see for instance Schaal et al. 2002, Siccard & Sabatier 2006, Kim et al. 2011 and Lesnoff et al. 2020.

Auxiliary functions

transform Calculates the LVs for any new matrix X from the model.

summary returns summary information for the model.

coef Calculates b-coefficients from the model.

predict Calculates the predictions for any new matrix X from the model.

Usage

```
plskern(X, Y, weights = NULL, nlv,
Xscaling = c("none", "pareto", "sd")[1], Yscaling = c("none", "pareto", "sd")[1])
plsnipals(X, Y, weights = NULL, nlv,
Xscaling = c("none", "pareto", "sd")[1], Yscaling = c("none", "pareto", "sd")[1])
plsrannar(X, Y, weights = NULL, nlv,
Xscaling = c("none", "pareto", "sd")[1], Yscaling = c("none", "pareto", "sd")[1])
## S3 method for class 'Plsr'
transform(object, X, ..., nlv = NULL)
## S3 method for class 'Plsr'
summary(object, X, ...)
## S3 method for class 'Plsr'
coef(object, ..., nlv = NULL)
```

110 plskern

```
## S3 method for class 'Plsr'
predict(object, X, ..., nlv = NULL)
```

Arguments

X	For the main functions: Training X-data (n,p) . — For the auxiliary functions: Training X-data (n,p) .
Υ	Training Y-data (n, q) .
weights	Weights $(n,1)$ to apply to the training observations. Internally, weights are "normalized" to sum to 1. Default to NULL (weights are set to $1/n$).
nlv	For the main functions: The number(s) of LVs to calculate. — For the auxiliary functions: The number(s) of LVs to consider.
Xscaling	X variable scaling among "none" (mean-centering only), "pareto" (mean-centering and pareto scaling), "sd" (mean-centering and unit variance scaling). If "pareto" or "sd", uncorrected standard deviation is used.
Yscaling	Y variable scaling among "none" (mean-centering only), "pareto" (mean-centering and pareto scaling), "sd" (mean-centering and unit variance scaling). If "pareto" or "sd", uncorrected standard deviation is used.
object	For the auxiliary functions: A fitted model, output of a call to the main functions.

For the auxiliary functions: Optional arguments. Not used.

Value

For plskern, plsnipals, plsrannar: A list of outputs, such as

Τ The X-score matrix (n, nlv). Ρ The X-loadings matrix (p, nlv). The X-loading weights matrix (p, nlv). С The Y-loading weights matrix (C = t(Beta), where Beta is the scores regression coefficients matrix). The PLS projection matrix (p, nlv). R The centering vector of X(p, 1). xmeans The centering vector of Y(q, 1). ymeans xscales The vector of X variable standard deviations (p, 1). yscales The vector of Y variable standard deviations (q, 1). weights Weights applied to the training observations. TT the X-score normalization factor.

intermediate output.

For transform.Plsr: X-scores matrix for new X-data.

For summary.Plsr:

matrix of explained variances. explvarx

plskern 111

```
For coef.Plsr:
```

int matrix (1,nlv) with the intercepts

B matrix (n,nlv) with the coefficients

For predict.Plsr:

pred

A list of matrices (m, q) with the Y predicted values for the new X-data

References

Andersson, M., 2009. A comparison of nine PLS1 algorithms. Journal of Chemometrics 23, 518-529.

Dayal, B.S., MacGregor, J.F., 1997. Improved PLS algorithms. Journal of Chemometrics 11, 73-85.

Hoskuldsson, A., 1988. PLS regression methods. Journal of Chemometrics 2, 211-228. https://doi.org/10.1002/cem.1180020

Kim, S., Kano, M., Nakagawa, H., Hasebe, S., 2011. Estimation of active pharmaceutical ingredients content using locally weighted partial least squares and statistical wavelength selection. Int. J. Pharm., 421, 269-274.

Lesnoff, M., Metz, M., Roger, J.M., 2020. Comparison of locally weighted PLS strategies for regression and discrimination on agronomic NIR Data. Journal of Chemometrics. e3209. https://onlinelibrary.wiley.com/doi/ab

Rannar, S., Lindgren, F., Geladi, P., Wold, S., 1994. A PLS kernel algorithm for data sets with many variables and fewer objects. Part 1: Theory and algorithm. Journal of Chemometrics 8, 111-125. https://doi.org/10.1002/cem.1180080204

Schaal, S., Atkeson, C., Vijayamakumar, S. 2002. Scalable techniques from nonparametric statistics for the real time robot learning. Applied Intell., 17, 49-60.

Sicard, E. Sabatier, R., 2006. Theoretical framework for local PLS1 regression and application to a rainfall data set. Comput. Stat. Data Anal., 51, 1393-1410.

Tenenhaus, M., 1998. La régression PLS: théorie et pratique. Editions Technip, Paris, France.

Wold, S., Sjostrom, M., Eriksson, I., 2001. PLS-regression: a basic tool for chemometrics. Chem. Int. Lab. Syst., 58, 109-130.

See Also

plsr_plsda_allsteps function to help determine the optimal number of latent variables, perform a permutation test, calculate model parameters and predict new observations.

```
n <- 6 ; p <- 4
Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- rnorm(n)
Ytrain <- cbind(y1 = ytrain, y2 = 100 * ytrain)
m <- 3
Xtest <- Xtrain[1:m, , drop = FALSE]
Ytest <- Ytrain[1:m, , drop = FALSE] ; ytest <- Ytest[1:m, 1]
nlv <- 3</pre>
```

112 plsrda

```
plskern(Xtrain, Ytrain, Xscaling = "sd", nlv = nlv)
plsnipals(Xtrain, Ytrain, Xscaling = "sd", nlv = nlv)
plsrannar(Xtrain, Ytrain, Xscaling = "sd", nlv = nlv)
plskern(Xtrain, Ytrain, Xscaling = "none", nlv = nlv)
plskern(Xtrain, Ytrain, nlv = nlv)$T
plskern(Xtrain, Ytrain, nlv = nlv, weights = 1:n)$T
fm <- plskern(Xtrain, Ytrain, nlv = nlv)</pre>
coef(fm)
coef(fm, nlv = 0)
coef(fm, nlv = 1)
transform(fm, Xtest)
transform(fm, Xtest, nlv = 1)
summary(fm, Xtrain)
predict(fm, Xtest)
predict(fm, Xtest, nlv = 0:3)
pred <- predict(fm, Xtest)$pred</pre>
msep(pred, Ytest)
```

plsrda

PLSDA models

Description

Discrimination (DA) based on PLS.

The training variable y (univariate class membership) is firstly transformed to a dummy table containing nclas columns, where nclas is the number of classes present in y. Each column is a dummy variable (0/1). Then, a PLS2 is implemented on the X-data and the dummy table, returning latent variables (LVs) that are used as dependent variables in a DA model.

- plsrda: Usual "PLSDA". A linear regression model predicts the Y-dummy table from the PLS2 LVs. This corresponds to the PLSR2 of the X-data and the Y-dummy table. For a given observation, the final prediction is the class corresponding to the dummy variable for which the prediction is the highest.
- plslda and plsqda: Probabilistic LDA and QDA are run over the PLS2 LVs, respectively.

Usage

```
plsrda(X, y, weights = NULL, nlv,
Xscaling = c("none", "pareto", "sd")[1], Yscaling = c("none", "pareto", "sd")[1])
plslda(X, y, weights = NULL, nlv, prior = c("unif", "prop"),
```

plsrda 113

```
Xscaling = c("none","pareto","sd")[1], Yscaling = c("none","pareto","sd")[1])
plsqda(X, y, weights = NULL, nlv, prior = c("unif", "prop"),
Xscaling = c("none","pareto","sd")[1], Yscaling = c("none","pareto","sd")[1])
## S3 method for class 'Plsrda'
predict(object, X, ..., nlv = NULL)
## S3 method for class 'Plsprobda'
predict(object, X, ..., nlv = NULL)
```

Arguments

X	For the main functions: Training X-data (n, p) . — For the auxiliary functions: New X-data (m, p) to consider.
У	Training class membership (n) . Note: If y is a factor, it is replaced by a character vector.
weights	Weights (n) to apply to the training observations for the PLS2. Internally, weights are "normalized" to sum to 1. Default to NULL (weights are set to $1/n$).
nlv	The number(s) of LVs to calculate.
prior	The prior probabilities of the classes. Possible values are "unif" (default; probabilities are set equal for all the classes) or "prop" (probabilities are set equal to the observed proportions of the classes in y).
Xscaling	X variable scaling among "none" (mean-centering only), "pareto" (mean-centering and pareto scaling), "sd" (mean-centering and unit variance scaling). If "pareto" or "sd", uncorrected standard deviation is used.
Yscaling	Y variable scaling, once converted to binary variables, among "none" (mean-centering only), "pareto" (mean-centering and pareto scaling), "sd" (mean-centering and unit variance scaling). If "pareto" or "sd", uncorrected standard deviation is used.
object	For the auxiliary functions: A fitted model, output of a call to the main functions.
	For the auxiliary functions: Optional arguments. Not used.

Value

For plsrda, plslda, plsqda:

fm	list with the model: (T): X-scores matrix; (P): X-loading matrix;(R): The PLS projection matrix (p,nlv); (W): X-loading weights matrix ;(C): The Y-loading weights matrix; (TT): the X-score normalization factor; (xmeans): the centering vector of X (p,1); (ymeans): the centering vector of Y (q,1); (xscales): the scaling vector of Y (q,1); (weights): vector of observation weights; (U): intermediate output.
lev	classes

ni number of observations in each class

114 plsrda

```
For predict.Plsrda, predict.Plsprobda:
```

```
pred predicted class for each observation
posterior calculated probability of belonging to a class for each observation
```

Note

The first example concerns PLSDA, and the second one concerns PLS LDA. fm are PLS1 models, and zfm are PLS2 models to predict the disjunctive matrix.

See Also

plsr_plsda_allsteps function to help determine the optimal number of latent variables, perform a permutation test, calculate model parameters and predict new observations.

```
## EXAMPLE OF PLSDA
n <- 50 ; p <- 8
Xtrain <- matrix(rnorm(n * p), ncol = p)</pre>
ytrain <- sample(c(1, 4, 10), size = n, replace = TRUE)
Xtest <- Xtrain[1:5, ] ; ytest <- ytrain[1:5]</pre>
nlv <- 5
fm <- plsrda(Xtrain, ytrain, Xscaling = "sd", nlv = nlv)</pre>
names(fm)
predict(fm, Xtest)
predict(fm, Xtest, nlv = 0:2)$pred
pred <- predict(fm, Xtest)$pred</pre>
err(pred, ytest)
zfm <- fm$fm
transform(zfm, Xtest)
transform(zfm, Xtest, nlv = 1)
summary(zfm, Xtrain)
coef(zfm)
coef(zfm, nlv = 0)
coef(zfm, nlv = 2)
## EXAMPLE OF PLS LDA
n <- 50 ; p <- 8
Xtrain <- matrix(rnorm(n * p), ncol = p)</pre>
ytrain \leftarrow sample(c(1, 4, 10), size = n, replace = TRUE)
Xtest <- Xtrain[1:5, ] ; ytest <- ytrain[1:5]</pre>
nlv <- 5
fm <- plslda(Xtrain, ytrain, Xscaling = "sd", nlv = nlv)</pre>
```

plsrda_agg 115

```
predict(fm, Xtest)
predict(fm, Xtest, nlv = 1:2)$pred

zfm <- fm$fm[[1]]
class(zfm)
names(zfm)
summary(zfm, Xtrain)
transform(zfm, Xtest[1:2, ])
coef(zfm)</pre>
```

plsrda_agg

PLSDA with aggregation of latent variables

Description

Ensemblist approach where the predictions are calculated by "averaging" the predictions of PLSDA models built with different numbers of latent variables (LVs).

For instance, if argument nlv is set to nlv = "5:10", the prediction for a new observation is the most occurrent level (vote) over the predictions returned by the models with 5 LVS, 6 LVs, ... 10 LVs.

```
plsrda_agg: use plsrda.plslda_agg: use plslda.plsqda_agg: use plsqda.
```

Usage

```
plsrda_agg(X, y, weights = NULL, nlv)
plslda_agg(X, y, weights = NULL, nlv, prior = c("unif", "prop"))
plsqda_agg(X, y, weights = NULL, nlv, prior = c("unif", "prop"))
## S3 method for class 'Plsda_agg'
predict(object, X, ...)
```

Arguments

X	For the main functions: Training X-data (n, p) . — For the auxiliary function: New X-data (m, p) to consider.
У	Training class membership (n) . Note: If y is a factor, it is replaced by a character vector.
weights	Weights $(n, 1)$ to apply to the training observations. Internally, weights are "normalized" to sum to 1. Default to NULL (weights are set to $1/n$).

116 plsrda_agg

nlv	A character string such as "5:20" defining the range of the numbers of LVs to consider (here: the models with nb LVS = 5 , 6 ,, 20 are averaged). Syntax such as "10" is also allowed (here: correponds to the single model with 10 LVs).
prior	The prior probabilities of the classes. Possible values are "unif" (default; probabilities are set equal for all the classes) or "prop" (probabilities are set equal to the observed proportions of the classes in y).
object	For the auxiliary function: A fitted model, output of a call to the main functions.
	For the auxiliary function: Optional arguments. Not used.

Value

For plsrda_agg, plslda_agg and plsqda_agg:

I list contaning: the model((fm)=(T): X-scores matrix; (P): X-loading matrix; (R): The PLS projection matrix (p,nlv); (W): X-loading weights matrix; (C): The Y-loading weights matrix; (TT): the X-score normalization factor; (xmeans): the centering vector of X (p,1); (ymeans): the centering vector of Y (q,1); (weights): vector of observation weights; (U): intermediate output), (lev):classes,

(ni):number of observations in each class

nlv range of the numbers of LVs considered

For predict.Plsda_agg:

pred Final predictions (after aggregation)
predlv Intermediate predictions (Per nb. LVs)

Note

the first example concerns PLSRDA-AGG, and the second one concerns PLSLDA-AGG.

```
## EXAMPLE OF PLSRDA-AGG

n <- 50 ; p <- 8
Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- sample(c(1, 4, 10, 2), size = n, replace = TRUE)

m <- 5
Xtest <- Xtrain[1:m, ] ; ytest <- ytrain[1:m]

nlv <- "2:5"
fm <- plsrda_agg(Xtrain, ytrain, nlv = nlv)
names(fm)
res <- predict(fm, Xtest)
names(res)
res$pred
err(res$pred, ytest)
res$predlv</pre>
```

plsrda_agg 117

```
pars <- mpars(nlv = c("1:3", "2:5"))
pars
res <- gridscore(</pre>
   Xtrain, ytrain, Xtest, ytest,
    score = err,
    fun = plsrda_agg,
    pars = pars)
res
segm \leftarrow segmkf(n = n, K = 3, nrep = 1)
res <- gridcv(
    Xtrain, ytrain,
    segm, score = err,
    fun = plslda_agg,
    pars = pars,
    verb = TRUE)
res
## EXAMPLE OF PLSLDA-AGG
n <- 50 ; p <- 8
Xtrain <- matrix(rnorm(n * p), ncol = p)</pre>
ytrain <- sample(c(1, 4, 10, 2), size = n, replace = TRUE)
#ytrain <- sample(c("a", "10", "d"), size = n, replace = TRUE)</pre>
m < -5
Xtest <- Xtrain[1:m, ] ; ytest <- ytrain[1:m]</pre>
nlv <- "2:5"
fm <- plslda_agg(Xtrain, ytrain, nlv = nlv, prior = "unif")</pre>
names(fm)
res <- predict(fm, Xtest)</pre>
names(res)
res$pred
err(res$pred, ytest)
res$predlv
pars <- mpars(nlv = c("1:3", "2:5"), prior = c("unif", "prop"))</pre>
pars
res <- gridscore(</pre>
    Xtrain, ytrain, Xtest, ytest,
    score = err,
    fun = plslda_agg,
    pars = pars)
res
segm \leftarrow segmkf(n = n, K = 3, nrep = 1)
res <- gridcv(
    Xtrain, ytrain,
    segm, score = err,
    fun = plslda_agg,
    pars = pars,
    verb = TRUE)
```

plsr_agg

res

plsr_agg

PLSR with aggregation of latent variables

Description

Ensemblist approach where the predictions are calculated by averaging the predictions of PLSR models (plskern) built with different numbers of latent variables (LVs).

For instance, if argument nlv is set to nlv = "5:10", the prediction for a new observation is the average (without weighting) of the predictions returned by the models with 5 LVS, 6 LVs, ... 10 LVs.

Usage

```
plsr_agg(X, Y, weights = NULL, nlv)
## S3 method for class 'Plsr_agg'
predict(object, X, ...)
```

Arguments

For plsr_agg:

X For the main function: Training X-data (n, p). — For the auxiliary function:

New X-data (m, p) to consider.

Y Training Y-data (n, q).

weights Weights (n, 1) to apply to the training observations. Internally, weights are "nor-

malized" to sum to 1. Default to NULL (weights are set to 1/n).

nlv A character string such as "5:20" defining the range of the numbers of LVs to

consider (here: the models with nb LVS = 5, 6, ..., 20 are averaged). Syntax such as "10" is also allowed (here: correponds to the single model with 10 LVs).

object For the auxiliary function: A fitted model, output of a call to the main functions.

... For the auxiliary function: Optional arguments. Not used.

Value

For plsr_agg:

fm

list contaning the model: (fm)=(T): X-scores matrix; (P): X-loading matrix; (R): The PLS projection matrix (p,nlv); (W): X-loading weights matrix (C): The Y-loading weights matrix; (TT): the X-score normalization factor; (xmeans): the centering vector of X (p,1); (ymeans): the centering vector of Y (q,1); (weights): vector of observation weights; (U): intermediate output.

plsr_agg

```
nlv range of the numbers of LVs considered

For predict.Plsr_agg:

pred Final predictions (after aggregation)

predlv Intermediate predictions (Per nb. LVs)
```

Note

In the example, zfm is the maximal PLSR model, and there is no sense to use gridscorely or gridcylv instead of gridscore or gridcy.

```
n < -20; p < -4
Xtrain <- matrix(rnorm(n * p), ncol = p)</pre>
ytrain <- rnorm(n)</pre>
Ytrain <- cbind(y1 = ytrain, y2 = 100 * ytrain)
m < -3
Xtest <- Xtrain[1:m, , drop = FALSE]</pre>
Ytest <- Ytrain[1:m, , drop = FALSE] ; ytest <- Ytest[1:m, 1]</pre>
nlv <- "1:3"
fm <- plsr_agg(Xtrain, ytrain, nlv = nlv)</pre>
names(fm)
zfm <- fm$fm
class(zfm)
names(zfm)
summary(zfm, Xtrain)
res <- predict(fm, Xtest)</pre>
names(res)
res$pred
msep(res$pred, ytest)
res$predlv
pars <- mpars(nlv = c("1:3", "2:5"))
pars
res <- gridscore(</pre>
    Xtrain, Ytrain, Xtest, Ytest,
    score = msep,
    fun = plsr_agg,
    pars = pars)
res
segm < - segmkf(n = n, K = K, nrep = 1)
```

```
segm
res <- gridcv(
    Xtrain, Ytrain,
    segm, score = msep,
    fun = plsr_agg,
    pars = pars,
    verb = TRUE)
res</pre>
```

plsr_plsda_allsteps

PLSR or PLSDA analysis steps

Description

Help determine the optimal number of latent variables by cross-validation, perform a permutation test, calculate model parameters and predict new observations, for plsr (plskern), plsrda (plsrda), plslda (plslda) or plsqda (plsqda) models.

Usage

```
plsr_plsda_allsteps(X, Xname = NULL, Xscaling = c("none", "pareto", "sd")[1],
                   Y, Yscaling = c("none", "pareto", "sd")[1], weights = NULL,
                   newX = NULL, newXname = NULL,
                   method = c("plsr", "plsrda", "plslda", "plsqda")[1],
                   prior = c("unif", "prop")[1],
                   step = c("nlvtest", "permutation", "model", "prediction")[1],
                   modeloutput = c("scores", "loadings", "coef", "vip"),
                   cvmethod = c("kfolds","loo")[1],
                   nbrep = 30,
                   seed = 123,
                   samplingk = NULL,
                   nfolds = 10,
                   npermut = 30,
                   criterion = c("err","rmse")[1],
                   selection = c("localmin", "globalmin", "1std")[1],
                   import = c("R", "ChemFlow", "W4M")[1],
                   outputfilename = NULL)
```

Arguments

X Training X-data (n, p). Xname name of the X-matrix

X variable scaling among "none" (mean-centering only), "pareto" (mean-centering

and pareto scaling), "sd" (mean-centering and unit variance scaling). If "pareto"

or "sd", uncorrected standard deviation is used.

Y Training Y-data (n, q) for plsr models, and (n, 1) for plsrda, plslda or plsqda

models.

Yscaling Y variable scaling among "none" (mean-centering only), "pareto" (mean-centering

and pareto scaling), "sd" (mean-centering and unit variance scaling). If "pareto"

or "sd", uncorrected standard deviation is used.

weights Weights (n, 1) to apply to the training observations. Internally, weights are "nor-

malized" to sum to 1. Default to NULL (weights are set to 1/n).

newX New X-data (m, p) to consider.

newXname name of the newX-matrix

method method to apply among "plsr", "plsrda", "plslda", "plsqda"

prior for plslda or plsqda models: The prior probabilities of the classes. Possible

values are "unif" (default; probabilities are set equal for all the classes) or "prop" (probabilities are set equal to the observed proportions of the classes in y).

step step of the analysis among "nlvtest" (cross-validation to help determine the

optimal number of latent variables), "permutation" (permutation test), "model" (model calculation), "prediction" (prediction of newX-data or X-data if any))

nlv number of latent variables to test if step is "nlvtest"; number of latent variables

of the model if step is not "nlvtest".

modeloutput if step is "model": outputs among "scores", "loadings", "coef" (regression co-

efficients), "vip" (Variable Importance in Projection; the VIP calculation being based on the proportion of Y-variance explained by the components, as proposed

by Mehmood et al (2012, 2020).)

cvmethod if step is "nlvtest" or "permutation": "kfolds" for k-folds cross-validation, or

"loo" for leave-one-out.

nbrep if step is "nlvtest" and cymethod is "kfolds": An integer, setting the number of

CV repetitions. Default value is 30. Must me set to 1 if cvmethod is "loo"

seed if step is "nlvtest" and cvmethod is "kfolds", or if step is "permutation: a nu-

meric. Seed used for the repeated resampling

samplingk A vector of length n. The elements are the values of a qualitative variable used

for stratified partition creation. If NULL, the first observation is set in the first

fold, the second observation in the second fold, etc...

nfolds if cymethod is "kfolds". An integer, setting the number of partitions to create.

Default value is 10.

npermut if step is "permutation": An integer, setting the number of Y-Block with permu-

tated responses to create. Default value is 30.

criterion if step is "nlvtest" or "permutation" and method is "plsrda", "plslda" or "plsqda":

optimisation criterion among "rmse" and "err" (for classification error rate)))

selection

if step is "nlvtest": a character indicating the selection method to use to choose the optimal combination of components, among "localmin", "globalmin", "1std". If "localmin": the optimal combination corresponds to the first local minimum of the mean CV rmse or error rate. If "globalmin": the optimal combination corresponds to the minimum mean CV rmse or error rate. If "1std" (one standard error rule): it corresponds to the first combination after which the mean cross-validated rmse or error rate does not decrease significantly.

import

If "R", X and Y are in the global environment, and the observation names are in rownames. If "ChemFlow", X and Y are tabulated tables (.txt), and the observation names are in the first column. If "W4M", X and Y are tabulated tables (.txt), and the observation names are in the headers of X, and in the first column of Y.

outputfilename

character: If not NULL, name of the tabular file, in which the function outputs have to be written.)

Value

If step is "nlvtest": table with rmsecv or cross-validated classification error rates. The suggested optimal number of latent variables is indicated by the binary "optimum" variable.

If step is "permutation": table with the dissimilarity between the original and the permutated Y-block, and the rmsecv or cross-validated classification error rates obtained with the permutated Y-block by the model and the given number of latent variables.

If step is "model": tables of scores, loadings, regression coefficients, and vip values, depending of the "modeloutput" parameter.

If step is "prediction": table of predicted scores and predicted classes or values.

```
seed = 123,
                   samplingk = NULL,
                   nfolds = 10,
                   npermut = 5,
                   criterion = c("err", "rmse")[1],
                   selection = c("localmin", "globalmin", "1std")[1],
                   outputfilename = NULL)
respermutationplsrda <- plsr_plsda_allsteps(X = Xtrain, Xname = NULL,</pre>
                   Xscaling = c("none","pareto","sd")[1],
                   Y = ytrain, Yscaling = "none", weights = NULL,
                   newX = Xtest, newXname = NULL,
                   method = c("plsr", "plsrda","plslda","plsqda")[2],
                   prior = c("unif", "prop")[1],
                   step = c("nlvtest", "permutation", "model", "prediction")[2],
                   modeloutput = c("scores","loadings","coef","vip"),
                   cvmethod = c("kfolds","loo")[2],
                   nbrep = 1,
                   seed = 123,
                   samplingk = NULL,
                   nfolds = 10,
                   npermut = 5,
                   criterion = c("err","rmse")[1],
                   selection = c("localmin", "globalmin", "1std")[1],
                   outputfilename = NULL)
plotxy(respermutationplsrda, pch=16)
abline (h = respermutationplsrda[respermutationplsrda[,"permut_dyssimilarity"]==0,"res_permut"])
resmodelplsrda <- plsr_plsda_allsteps(X = Xtrain, Xname = NULL,</pre>
                   Xscaling = c("none", "pareto", "sd")[1],
                   Y = ytrain, Yscaling = "none", weights = NULL,
                   newX = Xtest, newXname = NULL,
                   method = c("plsr", "plsrda","plslda","plsqda")[2],
                   prior = c("unif", "prop")[1],
                   step = c("nlvtest", "permutation", "model", "prediction")[3],
                   modeloutput = c("scores", "loadings", "coef", "vip"),
                   cvmethod = c("kfolds","loo")[2],
                   nbrep = 1,
                   seed = 123,
                   samplingk = NULL,
```

124 rmgap

```
nfolds = 10,
                   npermut = 5,
                   criterion = c("err", "rmse")[1],
                   selection = c("localmin", "globalmin", "1std")[1],
                   outputfilename = NULL)
resmodelplsrda$scores
resmodelplsrda$loadings
resmodelplsrda$coef
resmodelplsrda$vip
respredictionplsrda <- plsr_plsda_allsteps(X = Xtrain, Xname = NULL,
                   Xscaling = c("none", "pareto", "sd")[1],
                   Y = ytrain, Yscaling = "none", weights = NULL,
                   newX = Xtest, newXname = NULL,
                   method = c("plsr", "plsrda", "plslda", "plsqda")[2],
                   prior = c("unif", "prop")[1],
                   step = c("nlvtest", "permutation", "model", "prediction")[4],
                   modeloutput = c("scores","loadings","coef","vip"),
                   cvmethod = c("kfolds","loo")[2],
                   nbrep = 1,
                   seed = 123,
                   samplingk = NULL,
                   nfolds = 10,
                   npermut = 5,
                   criterion = c("err", "rmse")[1],
                   selection = c("localmin", "globalmin", "1std")[1],
                   outputfilename = NULL)
```

rmgap

Removing vertical gaps in spectra

Description

Remove the vertical gaps in spectra (rows of matrix X), e.g. for ASD. This is done by extrapolation from simple linear regressions computed on the left side of the gaps.

Usage

```
rmgap(X, indexcol, k = 5)
```

rr 125

Arguments

X A dataset.

indexcol The column indexes corresponding to the gaps. For instance, if two gaps are ob-

served between indexes 651-652 and between indexes 1451-1452, respectively,

then indexcol = c(651, 1451).

k The number of columns used on the left side of the gaps for fitting the linear

regressions.

Value

The corrected data X.

Note

In the example, two gaps are at wavelengths 1000-1001 nm and 1800-1801 nm.

Examples

```
data(asdgap)
X <- asdgap$X

indexcol <- which(colnames(X) == "1000" | colnames(X) == "1800")
indexcol
plotsp(X, lwd = 1.5)
abline(v = as.numeric(colnames(X)[1]) + indexcol - 1, col = "lightgrey", lty = 3)

zX <- rmgap(X, indexcol = indexcol)
plotsp(zX, lwd = 1.5)
abline(v = as.numeric(colnames(zX)[1]) + indexcol - 1, col = "lightgrey", lty = 3)</pre>
```

rr

Linear Ridge Regression

Description

Fitting linear ridge regression models (RR) (Hoerl & Kennard 1970, Hastie & Tibshirani 2004, Hastie et al 2009, Cule & De Iorio 2012) by SVD factorization.

Usage

```
rr(X, Y, weights = NULL, lb = 1e-2)
## S3 method for class 'Rr'
coef(object, ..., lb = NULL)
## S3 method for class 'Rr'
predict(object, X, ..., lb = NULL)
```

126 rr

Arguments

X For the main function: Training X-data (n, p). — For the auxiliary functions:

New X-data (m, p) to consider.

Y Training Y-data (n, q).

weights Weights (n, 1) to apply to the training observations. Internally, weights are "nor-

malized" to sum to 1. Default to NULL (weights are set to 1/n).

1b A value of regularization parameter lambda. If 1b = 0, a pseudo-inverse is used. object For the auxiliary functions: A fitted model, output of a call to the main function.

... — For the auxiliary functions: Optional arguments. Not used.

Value

For rr:

V eigenvector matrix of the correlation matrix (n,n).

TtDY intermediate output.

sv singular values of the matrix (1, n).

1b value of regularization parameter lambda.

xmeans the centering vector of $\mathbf{X}(p, 1)$. ymeans the centering vector of $\mathbf{Y}(q, 1)$.

weights the weights vector of X-variables (p, 1).

For coef.Rr:

int matrix (1,nlv) with the intercepts

B matrix (n,nlv) with the coefficients

df model complexity (number of degrees of freedom)

For predict.Rr:

pred A list of matrices (m, q) with the Y predicted values for the new X-data

References

Cule, E., De Iorio, M., 2012. A semi-automatic method to guide the choice of ridge parameter in ridge regression. arXiv:1205.0686.

Hastie, T., Tibshirani, R., 2004. Efficient quadratic regularization for expression arrays. Biostatistics 5, 329-340. https://doi.org/10.1093/biostatistics/kxh010

Hastie, T., Tibshirani, R., Friedman, J., 2009. The elements of statistical learning: data mining, inference, and prediction, 2nd ed. Springer, New York.

Hoerl, A.E., Kennard, R.W., 1970. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics 12, 55-67. https://doi.org/10.1080/00401706.1970.10488634

Wu, W., Massart, D.L., de Jong, S., 1997. The kernel PCA algorithms for wide data. Part I: Theory and algorithms. Chemometrics and Intelligent Laboratory Systems 36, 165-172. https://doi.org/10.1016/S0169-7439(97)00010-5

rrda 127

Examples

```
n <- 6 ; p <- 4
Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- rnorm(n)
Ytrain <- cbind(y1 = ytrain, y2 = 100 * ytrain)
m <- 3
Xtest <- Xtrain[1:m, , drop = FALSE]
Ytest <- Ytrain[1:m, , drop = FALSE] ; ytest <- Ytest[1:m, 1]
lb <- .1
fm <- rr(Xtrain, Ytrain, lb = lb)
coef(fm)
coef(fm, lb = .8)
predict(fm, Xtest)
predict(fm, Xtest, lb = c(0.1, .8))

pred <- predict(fm, Xtest)
pred msep(pred, Ytest)</pre>
```

rrda

RR-DA models

Description

Discrimination (DA) based on ridge regression (RR).

Usage

```
rrda(X, y, weights = NULL, lb = 1e-5)
## S3 method for class 'Rrda'
predict(object, X, ..., lb = NULL)
```

Arguments

For rrda:

Χ	For the main function: Training X-data (n,p) . — For the auxiliary function: New X-data (m,p) to consider.
У	Training class membership (n) . Note: If y is a factor, it is replaced by a character vector.
weights	Weights (n) to apply to the training observations for the PLS2. Internally, weights are "normalized" to sum to 1. Default to NULL (weights are set to $1/n$).
lb	A value of regularization parameter $lambda$. If 1b = 0, a pseudo-inverse is used in the RR.
object	For the auxiliary function: A fitted model, output of a call to the main functions.
	For the auxiliary function: Optional arguments. Not used.

128 rrda

Details

The training variable y (univariate class membership) is transformed to a dummy table containing nclas columns, where nclas is the number of classes present in y. Each column is a dummy variable (0/1). Then, a ridge regression (RR) is run on the X-data and the dummy table, returning predictions of the dummy variables. For a given observation, the final prediction is the class corresponding to the dummy variable for which the prediction is the highest.

Value

For rrda:

fm List with the outputs of the RR ((V): eigenvector matrix of the correlation matrix

(n,n); (TtDY): intermediate output; (sv): singular values of the matrix (1,n); (1b): value of regularization parameter lambda; (xmeans): the centering vector of X(p,1); (ymeans): the centering vector of Y(q,1); (weights): the weights

vector of X-variables (p, 1).

lev classes

ni number of observations in each class

For predict.Rrda:

pred matrix or list of matrices (if lb is a vector), with predicted class for each obser-

vation

posterior matrix or list of matrices (if lb is a vector), calculated probability of belonging

to a class for each observation

```
n <- 50 ; p <- 8
Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- sample(c(1, 4, 10), size = n, replace = TRUE)
m <- 5
Xtest <- Xtrain[1:m, ] ; ytest <- ytrain[1:m]
lb <- 1
fm <- rrda(Xtrain, ytrain, lb = lb)
predict(fm, Xtest)
pred <- predict(fm, Xtest)$pred
err(pred, ytest)

predict(fm, Xtest, lb = 0:2)
predict(fm, Xtest, lb = 0)</pre>
```

sampela 129

sampcla Within-class sampling	sampcla	Within-class sampling	
-------------------------------	---------	-----------------------	--

Description

The function divides a datset in two sets, "train" vs "test", using a stratified sampling on defined classes.

If argument y = NULL (default), the sampling is random within each class. If not, the sampling is systematic (regular grid) within each class over the quantitative variable y.

Usage

```
sampcla(x, y = NULL, m)
```

Arguments

X	A vector (length m) defining the class membership of the observations.
У	A vector (length m) defining the quantitative variable for the systematic sampling. If NULL (default), the sampling is random within each class.
m	Either an integer defining the equal number of test observation(s) to select per class, or a vector of integers defining the numbers to select for each class. In the last case, vector m must have a length equal to the number of classes present in x , and be ordered in the same way as the ordered class membership.

Value

train	Indexes (i.e. position in x) of the selected observations, for the training set.
test	Indexes (i.e. position in x) of the selected observations, for the test set.
lev	classes
ni	number of observations in each class

Note

The second example is a representative stratified sampling from an unsupervised clustering.

References

Naes, T., 1987. The design of calibration in near infra-red reflectance analysis by clustering. Journal of Chemometrics 1, 121-134.

130 sampdp

Examples

```
## EXAMPLE 1
x \leftarrow sample(c(1, 3, 4), size = 20, replace = TRUE)
table(x)
sampcla(x, m = 2)
s \leftarrow sampcla(x, m = 2)$test
x[s]
sampcla(x, m = c(1, 2, 1))
s \leftarrow sampcla(x, m = c(1, 2, 1))$test
x[s]
y <- rnorm(length(x))</pre>
sampcla(x, y, m = 2)
s \leftarrow sampcla(x, y, m = 2)$test
x[s]
## EXAMPLE 2
data(cassav)
X <- cassav$Xtrain
y <- cassav$ytrain
N \leftarrow nrow(X)
fm \leftarrow pcaeigenk(X, nlv = 10)
z \leftarrow stats::kmeans(x = fm$T, centers = 3, nstart = 25, iter.max = 50)
x <- z$cluster
z \leftarrow table(x)
p \leftarrow c(z) / N
psamp < - .20
m <- round(psamp * N * p)</pre>
random_sampling <- sampcla(x, m = m)</pre>
s <- random_sampling$test</pre>
table(x[s])
Systematic_sampling_for_y <- sampcla(x, y, m = m)
s <- Systematic_sampling_for_y$test</pre>
table(x[s])
```

sampdp

sampdp 131

Description

The function divides the data X in two sets, "train" vs "test", using the Duplex algorithm (Snee, 1977). The two sets are of equal size. If needed, the user can add aposteriori the eventual remaining observations (not in "train" nor "test") to "train".

Usage

```
sampdp(X, k, diss = c("eucl", "mahal"))
```

Arguments

Χ	X-data (n, p) to be sampled.
k	An integer defining the number of training observations to select. Must be $\leq n/2$.
diss	The type of dissimilarity used for selecting the observations in the algorithm. Possible values are "eucl" (default; Euclidean distance) or "mahal" (Mahalanobis distance).

Value

train	Indexes (i.e. row numbers in X) of the selected observations, for the training set.
test	Indexes (i.e. row numbers in X) of the selected observations, for the test set.
remain	Indexes (i.e., row numbers in X) of the remaining observations.

References

Kennard, R.W., Stone, L.A., 1969. Computer aided design of experiments. Technometrics, 11(1), 137-148.

Snee, R.D., 1977. Validation of Regression Models: Methods and Examples. Technometrics 19, 415-428. https://doi.org/10.1080/00401706.1977.10489581

```
n <- 10 ; p <- 3
X <- matrix(rnorm(n * p), ncol = p)
k <- 4
sampdp(X, k = k)
sampdp(X, k = k, diss = "mahal")</pre>
```

132 sampks

sampks

Kennard-Stone sampling

Description

The function divides the data *X* in two sets, "train" vs "test", using the Kennard-Stone (KS) algorithm (Kennard & Stone, 1969). The two sets correspond to two different underlying probability distributions: set "train" has higher dispersion than set "test".

Usage

```
sampks(X, k, diss = c("eucl", "mahal"))
```

Arguments

Χ	X-data (n, p) to be sampled.
k	An integer defining the number of training observations to select.
diss	The type of dissimilarity used for selecting the observations in the algorithm. Possible values are "eucl" (default; Euclidean distance) or "mahal" (Mahalanobis
	distance).

Value

train	Indexes (i.e. row numbers in X) of the selected observations, for the training
	set.
test	Indexes (i.e. row numbers in X) of the selected observations, for the test set.

References

Kennard, R.W., Stone, L.A., 1969. Computer aided design of experiments. Technometrics, 11(1), 137-148.

```
n <- 10 ; p <- 3
X <- matrix(rnorm(n * p), ncol = p)

k <- 7
sampks(X, k = k)

n <- 10 ; k <- 25
X <- expand.grid(1:n, 1:n)
X <- X + rnorm(nrow(X) * ncol(X), 0, .1)
s <- sampks(X, k)$train
plot(X)
points(X[s, ], pch = 19, col = 2, cex = 1.5)</pre>
```

savgol 133

		-
sa	via	·∧ I
Sа	٧×	LU.

Savitzky-Golay smoothing

Description

Smoothing by derivation, with a Savitzky-Golay filter, of the row observations (e.g. spectra) of a data set.

The function uses function sgolayfilt of package signal available on the CRAN.

Usage

```
savgol(X, m, n, p, ts = 1)
```

Arguments

X	X-data).
m	Derivation order.
n	Filter length (must be odd), i.e. the number of colums in X defining the filter window.
p	Polynomial order.
ts	Scaling factor (e.g. the absolute step between two columns in matrix X), see argument ts in function sgolayfilt. This has not impact on the form of the transformed output.

Value

A matrix of the transformed data.

```
X <- cassav$Xtest

m <- 1; n <- 11; p <- 2
Xp <- savgol(X, m, n, p)

oldpar <- par(mfrow = c(1, 1))
par(mfrow = c(1, 2))
plotsp(X, main = "Signal")
plotsp(Xp, main = "Corrected signal")
abline(h = 0, lty = 2, col = "grey")
par(oldpar)</pre>
```

134 scordis

scordis

Score distances (SD) in a PCA or PLS score space

Description

scordis calculates the score distances (SD) for a PCA or PLS model. SD is the Mahalanobis distance of the projection of a row observation on the score plan to the center of the score space.

A distance cutoff is computed using a moment estimation of the parameters of a Chi-squared distrbution for SD^2 (see e.g. Pomerantzev 2008). In the function output, column dstand is a standardized distance defined as SD/cutoff. A value dstand > 1 can be considered as extreme.

The Winisi "GH" is also provided (usually considered as extreme if GH > 3).

Usage

```
scordis(
   object, X = NULL,
   nlv = NULL,
   rob = TRUE, alpha = .01
)
```

Arguments

object	A fitted model, output of a call to a fitting function (for example from pcasvd, plskern,).
Χ	New X-data.
nlv	Number of components (PCs or LVs) to consider.
rob	Logical. If TRUE, the moment estimation of the distance cutoff is robustified. This can be recommended after robust PCA or PLS on small data sets containing extreme values.
alpha	Risk- I level for defining the cutoff detecting extreme values.

Value

res.train	matrix with distances, standardized distances and Winisi "GH", for the training set.
res	matrix with distances, standardized distances and Winisi "GH", for new X-data if any.
cutoff	cutoff value

References

M. Hubert, P. J. Rousseeuw, K. Vanden Branden (2005). ROBPCA: a new approach to robust principal components analysis. Technometrics, 47, 64-79.

Pomerantsev, A.L., 2008. Acceptance areas for multivariate classification derived by projection methods. Journal of Chemometrics 22, 601-609. https://doi.org/10.1002/cem.1147

segmkf 135

Examples

```
n <- 6 ; p <- 4
Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- rnorm(n)
Xtest <- Xtrain[1:3, , drop = FALSE]

nlv <- 3
fm <- pcasvd(Xtrain, nlv = nlv)
scordis(fm)
scordis(fm, nlv = 2)
scordis(fm, Xtest, nlv = 2)</pre>
```

segmkf

Segments for cross-validation

Description

Build segments of observations for K-Fold or "test-set" cross-validation (CV).

The CV can eventually be randomly repeated. For each repetition:

- K-fold CV Function segmkf returns the K segments.
- Test-set CV Function segmts returns a segment (of a given length) randomly sampled in the dataset.

CV of blocks

Argument y allows sampling **blocks of observations** instead of observations. This can be required when there are repetitions in the data. In such a situation, CV should account for the repetition level (if not, the error rates are in general highly underestimated). For implementing such a CV, object y must be a a vector (n) defining the blocks, in the same order as in the data.

In any cases (y = NULL or not), the functions return a list of vector(s). Each vector contains the indexes of the observations defining the segment.

Usage

Arguments

The total number of row observations in the dataset. If y = NULL, the CV is implemented on 1:n. If y != NULL, blocks of observations (defined in y) are sampled instead of observations (but indexes of observations are returned).

y A vector (n) defining the blocks. Default to NULL.

136 selwold

K	For segmkf. The number of folds (i.e. segments) in the K-fold CV.
type	For segmkf.The type K-fold CV. Possible values are "random" (default), "consecutive" and "interleaved".
m	For segmts. If $y = NULL$, the number of observations in the segment. If not, the number of blocks in the segment.
nrep	The number of replications of the repeated CV. Default to nrep = 1.

Value

The segments (lists of indexes).

Examples

```
Kfold <- segmkf(n = 10, K = 3)
interleavedKfold <- segmkf(n = 10, K = 3, type = "interleaved")
LeaveOneOut <- segmkf(n = 10, K = 10)
RepeatedKfold <- segmkf(n = 10, K = 3, nrep = 2)
repeatedTestSet <- segmts(n = 10, m = 3, nrep = 5)
n <- 10
y <- rep(LETTERS[1:5], 2)
y

Kfold_withBlocks <- segmkf(n = n, y = y, K = 3, nrep = 1)
z <- Kfold_withBlocks
z
y[z$rep1$segm1]
y[z$rep1$segm2]
y[z$rep1$segm3]

TestSet_withBlocks <- segmts(n = n, y = y, m = 3, nrep = 1)
z <- TestSet_withBlocks
z
y[z$rep1$segm1]</pre>
```

selwold

Heuristic selection of the dimension of a latent variable model with the Wold's criterion

Description

The function helps selecting the dimensionnality of latent variable (LV) models (e.g. PLSR) using the "Wold criterion".

selwold 137

The criterion is the "precision gain ratio" R = 1 - r(a+1)/r(a) where r is an observed error rate quantifying the model performance (msep, classification error rate, etc.) and a the model dimensionnality (= nb. LVs). It can also represent other indicators such as the eigenvalues of a PCA.

R is the relative gain in efficiency after a new LV is added to the model. The iterations continue until R becomes lower than a threshold value alpha. By default and only as an indication, the default alpha = .05 is set in the function, but the user should set any other value depending on his data and parcimony objective.

In the original article, Wold (1978; see also Bro et al. 2008) used the ratio of **cross-validated** over **training** residual sums of squares, i.e. PRESS over SSR. Instead, selwold compares values of consistent nature (the successive values in the input vector r), e.g. PRESS only . For instance, r was set to PRESS values in Li et al. (2002) and Andries et al. (2011), which is equivalent to the "punish factor" described in Westad & Martens (2000).

The ratio R is often erratic, making difficult the dimensionnally selection. Function selwold proposes to calculate a smoothing of R (argument smooth).

Usage

```
selwold(
    r, indx = seq(length(r)),
    smooth = TRUE, f = 1/3,
    alpha = .05, digits = 3,
    plot = TRUE,
    xlab = "Index", ylab = "Value", main = "r",
    ...
)
```

Arguments

r	Vector of a given error rate (n) or any other indicator.
indx	Vector of indexes (n), typically the nb. of Lvs.
smooth	Logical. If TRUE (default), the selection is done on the smoothed ${\cal R}.$
f	Window for smoothing ${\cal R}$ with function lowers.
alpha	Proportion $alpha$ used as threshold for R .
digits	Number of digits for R .
plot	Logical. If TRUE (default), results are plotted.
xlab	x-axis label of the plot of r (left-side in the graphic window).
ylab	y-axis label of the plot of r (left-side in the graphic window).
main	Title of the plot of r (left-side in the graphic window).
	Other arguments to pass in function lowess.

138 selwold

Value

res	matrix with for each number of Lvs: r , the observed error rate quantifying the model performance; $diff$, the difference between $r(a+1)$ and $r(a)$; R , the relative gain in efficiency after a new LV is added to the model; Rs , smoothing of R .
opt	The index of the minimum for r .
sel	The index of the selection from the R (or smoothed R) threshold.

References

Andries, J.P.M., Vander Heyden, Y., Buydens, L.M.C., 2011. Improved variable reduction in partial least squares modelling based on Predictive-Property-Ranked Variables and adaptation of partial least squares complexity. Analytica Chimica Acta 705, 292-305. https://doi.org/10.1016/j.aca.2011.06.037

Bro, R., Kjeldahl, K., Smilde, A.K., Kiers, H.A.L., 2008. Cross-validation of component models: A critical look at current methods. Anal Bioanal Chem 390, 1241-1251. https://doi.org/10.1007/s00216-007-1790-1

Li, B., Morris, J., Martin, E.B., 2002. Model selection for partial least squares regression. Chemometrics and Intelligent Laboratory Systems 64, 79-89. https://doi.org/10.1016/S0169-7439(02)00051-5

Westad, F., Martens, H., 2000. Variable Selection in near Infrared Spectroscopy Based on Significance Testing in Partial Least Squares Regression. J. Near Infrared Spectrosc., JNIRS 8, 117-124.

Wold S. Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models. Technometrics. 1978;20(4):397-405

snv 139

snv

Standard normal variate transformation (SNV)

Description

SNV transformation of the row observations (e.g. spectra) of a dataset. By default, each observation is centered on its mean and divided by its standard deviation.

Usage

```
snv(X, center = TRUE, scale = TRUE)
```

Arguments

```
X X-data (n,p).

center Logical. If TRUE (default), the centering in the SNV is done.

scale Logical. If TRUE (default), the scaling in the SNV is done.
```

Value

A matrix of the transformed data.

```
data(cassav)

X <- cassav$Xtest

Xp <- snv(X)

oldpar <- par(mfrow = c(1, 1))
 par(mfrow = c(1, 2))
 plotsp(X, main = "Signal")
 plotsp(Xp, main = "Corrected signal")
 abline(h = 0, lty = 2, col = "grey")
 par(oldpar)</pre>
```

sopls

Block dimension reduction by SO-PLS

Description

Function sop1sr implements dimension reductions of pre-selected blocks of variables (= set of columns) of a reference (= training) matrix, by sequential orthogonalization-PLS (said "SO-PLS").

Function soplsrcv perfoms repeteated cross-validation of an SO-PLS model in order to choose the optimal ly combination from the different blocks.

SO-PLS is described for instance in Menichelli et al. (2014), Biancolillo et al. (2015) and Biancolillo (2016).

The block reduction consists in calculating latent variables (= scores) for each block, each block being sequentially orthogonalized to the information computed from the previous blocks.

The function allows giving a priori weights to the rows of the reference matrix in the calculations.

Auxiliary functions

transform Calculates the LVs for any new matrices list Xlist from the model. predict Calculates the predictions for any new matrices list Xlist from the model.

Usage

```
soplsr(Xlist, Y, Xscaling = c("none", "pareto", "sd")[1],
Yscaling = c("none", "pareto", "sd")[1], weights = NULL, nlv)

soplsrcv(Xlist, Y, Xscaling = c("none", "pareto", "sd")[1],
Yscaling = c("none", "pareto", "sd")[1], weights = NULL, nlvlist = list(),
nbrep = 30, cvmethod = "kfolds", seed = 123, samplingk = NULL, nfolds = 7,
optimisation = c("global", "sequential")[1],
selection = c("localmin", "globalmin", "1std")[1], majorityvote = FALSE)

## S3 method for class 'Soplsr'
transform(object, X, ...)

## S3 method for class 'Soplsr'
predict(object, X, ...)
```

Arguments

Xlist	A list of matrices or data frames of reference (= training) observations.
X	For the auxiliary functions: list of new X-data, with the same variables than the training X-data.
Υ	A nxq matrix or data frame, or a vector of length n , of reference (= training) responses.

Xscaling vector (of length Xlist) of variable scaling for each datablock, among "none"

(mean-centering only), "pareto" (mean-centering and pareto scaling), "sd" (mean-centering and unit variance scaling). If "pareto" or "sd", uncorrected standard

deviation is used.

Yscaling variable scaling for the Y-block, among "none" (mean-centering only), "pareto"

(mean-centering and pareto scaling), "sd" (mean-centering and unit variance

scaling). If "pareto" or "sd", uncorrected standard deviation is used.

weights a priori weights to the rows of the reference matrix in the calculations.

nlv A vector of same length as the number of blocks defining the number of scores

to calculate for each block, or a single number. In this last case, the same number

of scores is used for all the blocks.

nlvlist A list of same length as the number of X-blocks. Each component of the list

gives the number of PLS components of the corresponding X-block to test.

nbrep An integer, setting the number of CV repetitions. Default value is 30.

cvmethod "kfolds" for k-folds cross-validation, or "loo" for leave-one-out.

seed a numeric. Seed used for the repeated resampling, and if cvmethod is "kfolds"

and samplingk is not NULL.

samplingk A vector of length n. The elements are the values of a qualitative variable used

for stratified partition creation. If NULL, the first observation is set in the first

fold, the second observation in the second fold, etc...

nfolds An integer, setting the number of partitions to create. Default value is 7.

optimisation "global" or "sequential" optimisation of the number of components. If "sequen-

tial", the optimal lv number is found for the first X-block, then for the 2nd one,

etc...

selection a character indicating the selection method to use to choose the optimal com-

bination of components, among "localmin", "globalmin", "1std". If "localmin": the optimal combination corresponds to the first local minimum of the mean CV rmse. If "globalmin": the optimal combination corresponds to the minimum mean CV rmse. If "1std" (one standard error rule): it corresponds to the first combination after which the mean cross-validated rmse does not decrease

significantly.

majorityvote only if optimisation is "global" or one X-block. If majorityvote is TRUE, the

optimal combination is chosen for each Y variable, with the chosen selection, before a majority vote. If majorityvote is "FALSE, the optimal combination is

simply chosen with the chosen selection.

object For the auxiliary functions: A fitted model, output of a call to the main functions.

... For the auxiliary functions: Optional arguments. Not used.

Value

For soplsr:

fm A list of the plsr models.

T A matrix with the concatenated scores calculated from the X-blocks.

pred A matrice nxq with the calculated fitted values.

xmeans list of vectors of X-mean values.

ymeans vector of Y-mean values.

xscales list of vectors of X-scaling values.

yscales vector of Y-scaling values.

b A list of X-loading weights, used in the orthogonalization step.

weights Weights applied to the training observations.

nlv vector of numbers of latent variables from each X-block.

For transform. Soplsr: the LVs calculated for the new matrices list Xlist from the model.

For predict. Soplsr: predicted values for each observation

For soplsrcv:

lycombi matrix or list of matrices, of tested component combinations.

optimcombi the number of PLS components of each X-block allowing the optimisation of

the mean rmseCV.

rmseCV_byY matrix or list of matrices of mean and sd of cross-validated RMSE in the model

for each combination and each response variable.

ExplVarCV_byY matrix or list of matrices of mean and sd of cross-validated explained variances

in the model for each combination and each response variable.

rmseCV matrix or list of matrices of mean and sd of cross-validated RMSE in the model

for each combination and response variables.

ExplVarCV matrix or list of matrices of mean and sd of cross-validated explained variances

in the model for each combination and response variables.

References

- Biancolillo et al., 2015. Combining SO-PLS and linear discriminant analysis for multi-block classification. Chemometrics and Intelligent Laboratory Systems, 141, 58-67.
- Biancolillo, A. 2016. Method development in the area of multi-block analysis focused on food analysis. PhD. University of copenhagen.
- Menichelli et al., 2014. SO-PLS as an exploratory tool for path modelling. Food Quality and Preference, 36, 122-134.
- Tenenhaus, M., 1998. La régression PLS: théorie et pratique. Editions Technip, Paris, France.

See Also

soplsr_soplsda_allsteps function to help determine the optimal number of latent variables, perform a permutation test, calculate model parameters and predict new observations.

```
N < -10; p < -12
set.seed(1)
X \leftarrow matrix(rnorm(N * p, mean = 10), ncol = p, byrow = TRUE)
Y \leftarrow matrix(rnorm(N * 2, mean = 10), ncol = 2, byrow = TRUE)
colnames(X) <- paste("varx", 1:ncol(X), sep = "")
colnames(Y) <- paste("vary", 1:ncol(Y), sep = "")</pre>
rownames(X) <- rownames(Y) <- paste("obs", 1:nrow(X), sep = "")</pre>
set.seed(NULL)
Χ
n <- nrow(X)
X_{list} \leftarrow list(X[,1:4], X[,5:7], X[,9:ncol(X)])
X_{list_2} \leftarrow list(X[1:2,1:4], X[1:2,5:7], X[1:2,9:ncol(X)])
soplsrcv(X_list, Y, Xscaling = c("none", "pareto", "sd")[1],
Yscaling = c("none", "pareto", "sd")[1], weights = NULL,
nlvlist=list(0:1, 1:2, 0:1), nbrep=1, cvmethod="loo", seed = 123, samplingk=NULL,
optimisation="global", selection="localmin", majorityvote=FALSE)
ncomp < - 2
fm <- soplsr(X_list, Y, nlv = ncomp)</pre>
transform(fm, X_list_2)
predict(fm, X_list_2)
mse(predict(fm, X_list), Y)
# VIP calculation based on the proportion of Y-variance explained by the components
vip(fm\$fm[[1]], X_list[[1]], Y = NULL, nlv = ncomp)
vip(fm\$fm[[2]], X_list[[2]], Y = NULL, nlv = ncomp)
vip(fm\$fm[[3]], X_list[[3]], Y = NULL, nlv = ncomp)
ncomp < - c(2, 0, 3)
fm <- soplsr(X_list, Y, nlv = ncomp)</pre>
transform(fm, X_list_2)
predict(fm, X_list_2)
mse(predict(fm, X_list), Y)
ncomp <- 0
fm <- soplsr(X_list, Y, nlv = ncomp)</pre>
transform(fm, X_list_2)
predict(fm, X_list_2)
ncomp <- 2
weights <- rep(1 / n, n)
#w <- 1:n
fm <- soplsr(X_list, Y, Xscaling = c("sd", "pareto", "none"), nlv = ncomp, weights = weights)</pre>
transform(fm, X_list_2)
predict(fm, X_list_2)
```

144 soplsrda

soplsrda

Block dimension reduction by SO-PLS-DA

Description

Function soplsrda implements dimension reductions of pre-selected blocks of variables (= set of columns) of a reference (= training) matrix, by sequential orthogonalization-PLS (said "SO-PLS") in a context of discrimination.

Function soplsrdacv perfoms repeteated cross-validation of an SO-PLS-RDA model in order to choose the optimal ly combination from the different blocks.

The block reduction consists in calculating latent variables (= scores) for each block, each block being sequentially orthogonalized to the information computed from the previous blocks.

The function allows giving a priori weights to the rows of the reference matrix in the calculations.

Insop1s1da and sop1sqda, probabilistic LDA and QDA are run over the PLS2 LVs, respectively.

Usage

```
soplsrda(Xlist, y, Xscaling = c("none", "pareto", "sd")[1],
Yscaling = c("none", "pareto", "sd")[1], weights = NULL, nlv)
soplslda(Xlist, y, Xscaling = c("none", "pareto", "sd")[1],
Yscaling = c("none", "pareto", "sd")[1], weights = NULL, nlv,
prior = c("unif", "prop"))
soplsqda(Xlist, y, Xscaling = c("none", "pareto", "sd")[1],
Yscaling = c("none", "pareto", "sd")[1], weights = NULL, nlv,
prior = c("unif", "prop"))
soplsrdacv(Xlist, y, Xscaling = c("none", "pareto", "sd")[1],
Yscaling = c("none", "pareto", "sd")[1], weights = NULL, nlvlist=list(),
nbrep=30, cvmethod="kfolds", seed = 123, samplingk = NULL, nfolds = 7,
optimisation = c("global", "sequential")[1],
criterion = c("err", "rmse")[1], selection = c("localmin", "globalmin", "1std")[1])
soplsldacv(Xlist, y, Xscaling = c("none", "pareto", "sd")[1],
Yscaling = c("none", "pareto", "sd")[1], weights = NULL, nlvlist=list(),
prior = c("unif", "prop"), nbrep = 30, cvmethod = "kfolds", seed = 123, samplingk = NULL,
nfolds = 7, optimisation = c("global", "sequential")[1],
criterion = c("err", "rmse")[1], selection = c("localmin", "globalmin", "1std")[1])
soplsqdacv(Xlist, y, Xscaling = c("none", "pareto", "sd")[1],
Yscaling = c("none", "pareto", "sd")[1], weights = NULL, nlvlist = list(),
prior = c("unif", "prop"), nbrep = 30, cvmethod = "kfolds", seed = 123, samplingk = NULL,
nfolds = 7, optimisation = c("global", "sequential")[1],
```

soplsrda 145

```
criterion = c("err","rmse")[1], selection = c("localmin","globalmin","1std")[1])
## S3 method for class 'Soplsrda'
transform(object, X, ...)
## S3 method for class 'Soplsprobda'
transform(object, X, ...)
## S3 method for class 'Soplsrda'
predict(object, X, ...)
## S3 method for class 'Soplsprobda'
predict(object, X, ...)
```

Arguments

Xlist	For the main functions: A list of matrices or data frames of reference (= training) observations.
X	For the auxiliary functions: list of new X-data, with the same variables than the training X-data.
у	Training class membership (n) . Note: If y is a factor, it is replaced by a character vector.
Xscaling	vector (of length Xlist) of variable scaling for each datablock, among "none" (mean-centering only), "pareto" (mean-centering and pareto scaling), "sd" (mean-centering and unit variance scaling). If "pareto" or "sd", uncorrected standard deviation is used.
Yscaling	variable scaling for the Y-block, among "none" (mean-centering only), "pareto" (mean-centering and pareto scaling), "sd" (mean-centering and unit variance scaling). If "pareto" or "sd", uncorrected standard deviation is used.
weights	a priori weights to the rows of the reference matrix in the calculations.
nlv	A vector of same length as the number of blocks defining the number of scores to calculate for each block, or a single number. In this last case, the same number of scores is used for all the blocks.
nlvlist	A list of same length as the number of X-blocks. Each component of the list gives the number of PLS components of the corresponding X-block to test.
nbrep	An integer, setting the number of CV repetitions. Default value is 30.
cvmethod	"kfolds" for k-folds cross-validation, or "loo" for leave-one-out.
seed	a numeric. Seed used for the repeated resampling, and if cvmethod is "kfolds" and samplingk is not NULL.
samplingk	Optional. A vector of length n. The elements are the values of a qualitative variable used for stratified partition creation.
nfolds	An integer, setting the number of partitions to create. Default value is 7.
optimisation	"global" or "sequential" optimisation of the number of components. If "sequential", the optimal lv number is found for the first X-block, then for the 2nd one, etc

146 soplsrda

criterion optimisation criterion among "rmse" and "err" (for classification error rate)

selection a character indicating the selection method to use to choose the optimal com-

bination of components, among "localmin", "globalmin", "1std". If "localmin": the optimal combination corresponds to the first local minimum of the mean CV rmse or error rate. If "globalmin": the optimal combination corresponds to the minimum mean CV rmse or error rate. If "1std" (one standard error rule): it corresponds to the first combination after which the mean cross-validated rmse

or error rate does not decrease significantly.

prior The prior probabilities of the classes. Possible values are "unif" (default; proba-

bilities are set equal for all the classes) or "prop" (probabilities are set equal to

the observed proportions of the classes in y).

object For the auxiliary functions: A fitted model, output of a call to the main functions.

... For the auxiliary functions: Optional arguments. Not used.

Value

For soplsrda, soplslda, soplsqda:

fm list with the PLS models: (T): X-scores matrix; (P): X-loading matrix;(R): The

PLS projection matrix (p,nlv); (W): X-loading weights matrix; (C): The Y-loading weights matrix; (TT): the X-score normalization factor; (xmeans): the centering vector of X (p,1); (ymeans): the centering vector of Y (q,1); (weights): vector of observation weights; (Xscales): Y scaling values; (Yscales): Y scaling

values; (U): intermediate output.

lev classes

ni number of observations in each class

For transform. Soplsrda, transform. Soplsprobda: the LVs Calculated for the new matrices list X list from the model.

For predict. Soplsrda, predict. Soplsprobda:

pred predicted class for each observation

posterior calculated probability of belonging to a class for each observation

For soplsrdacv, soplsldacv, soplsqdacv:

lycombi matrix or list of matrices, of tested component combinations.

optimCombiLine number of the combination line corresponding to the optimal one. In the case of

a sequential optimisation, it is the number of the combination line in the model

with all the X-blocks.

optimcombi the number of PLS components of each X-block allowing the optimisation of

the mean rmseCV.

optimExplVarCV cross-validated explained variance for the optimal soplsda model.

rmseCV matrix or list of matrices of mean and sd of cross-validated rmse in the model

for each combination and response variables.

soplsrda 147

ExplVarCV	matrix or list of matrices of mean and sd of cross-validated explained variances in the model for each combination and response variables.
errCV	matrix or list of matrices of mean and sd of cross-validated classification error rates in the model for each combination and response variables.

References

- Biancolillo et al. , 2015. Combining SO-PLS and linear discriminant analysis for multi-block classification. Chemometrics and Intelligent Laboratory Systems, 141, 58-67.

- Biancolillo, A. 2016. Method development in the area of multi-block analysis focused on food analysis. PhD. University of copenhagen.
- Menichelli et al., 2014. SO-PLS as an exploratory tool for path modelling. Food Quality and Preference, 36, 122-134.
- Tenenhaus, M., 1998. La régression PLS: théorie et pratique. Editions Technip, Paris, France.

See Also

soplsr_soplsda_allsteps function to help determine the optimal number of latent variables, perform a permutation test, calculate model parameters and predict new observations.

```
N < -10; p < -12
set.seed(1)
X <- matrix(rnorm(N * p, mean = 10), ncol = p, byrow = TRUE)</pre>
y \leftarrow matrix(sample(c("1", "4", "10"), size = N, replace = TRUE), ncol=1)
colnames(X) <- paste("x", 1:ncol(X), sep = "")</pre>
set.seed(NULL)
n \leftarrow nrow(X)
X_{list} \leftarrow list(X[,1:4], X[,5:7], X[,9:ncol(X)])
X_{list_2} \leftarrow list(X[1:2,1:4], X[1:2,5:7], X[1:2,9:ncol(X)])
# EXEMPLE WITH SO-PLS-RDA
soplsrdacv(X_list, y, Xscaling = c("none", "pareto", "sd")[1],
Yscaling = c("none", "pareto", "sd")[1], weights = NULL,
nlvlist=list(0:1, 1:2, 0:1), nbrep=1, cvmethod="loo", seed = 123,
samplingk = NULL, nfolds = 3, optimisation = "global",
criterion = c("err", "rmse")[1], selection = "localmin")
ncomp <- 2
fm <- soplsrda(X_list, y, nlv = ncomp)</pre>
predict(fm, X_list_2)
transform(fm, X_list_2)
ncomp < - c(2, 0, 3)
fm <- soplsrda(X_list, y, nlv = ncomp)</pre>
predict(fm, X_list_2)
transform(fm, X_list_2)
```

```
ncomp <- 0
fm <- soplsrda(X_list, y, nlv = ncomp)
predict(fm,X_list_2)
transform(fm,X_list_2)

# EXEMPLE WITH SO-PLS-LDA
ncomp <- 2
weights <- rep(1 / n, n)
#w <- 1:n
soplslda(X_list, y, Xscaling = "none", nlv = ncomp, weights = weights)
soplslda(X_list, y, Xscaling = "pareto", nlv = ncomp, weights = weights)
soplslda(X_list, y, Xscaling = "sd", nlv = ncomp, weights = weights)
fm <- soplslda(X_list, y, Xscaling = "sd", nlv = ncomp, weights = weights)

fm <- soplslda(X_list, y, Xscaling = c("none", "pareto", "sd"), nlv = ncomp, weights = weights)
predict(fm,X_list_2)
transform(fm,X_list_2)</pre>
```

soplsr_soplsda_allsteps

SOPLSR or SOPLSDA analysis steps

Description

Help determine the optimal number of latent variables by cross-validation, perform a permutation test, calculate model parameters and predict new observations, for soplsr (soplsr), soplsrda (soplsrda), soplslda (soplsrda) or soplsqda (soplsqda) models.

Usage

```
npermut = 30,
optimisation = c("global", "sequential")[1],
criterion = c("err","rmse")[1],
selection = c("localmin", "globalmin", "1std")[1],
import = c("R", "ChemFlow", "W4M")[1],
outputfilename = NULL)
```

Arguments

list of training X-data (n, p). Xlist name of the X-matrices **Xnames**

vector of Xlist length. X variable scaling among "none" (mean-centering only), Xscaling

"pareto" (mean-centering and pareto scaling), "sd" (mean-centering and unit variance scaling). If "pareto" or "sd", uncorrected standard deviation is used.

Υ Training Y-data (n, q) for plsr models, and (n, 1) for plsrda, plslda or plsqda

models.

Yscaling Y variable scaling among "none" (mean-centering only), "pareto" (mean-centering

and pareto scaling), "sd" (mean-centering and unit variance scaling). If "pareto"

or "sd", uncorrected standard deviation is used.

weights Weights (n, 1) to apply to the training observations. Internally, weights are "nor-

malized" to sum to 1. Default to NULL (weights are set to 1/n).

newXlist list of new X-data (m, p) to consider.

names of the newX-matrices newXnames

method to apply among "plsr", "plsrda", "plslda", "plsqda" method

for plslda or plsqda models: The prior probabilities of the classes. Possible prior

values are "unif" (default; probabilities are set equal for all the classes) or "prop"

(probabilities are set equal to the observed proportions of the classes in y).

step of the analysis among "nlvtest" (cross-validation to help determine the step

> optimal number of latent variables), "permutation" (permutation test), "model" (model calculation), "prediction" (prediction of newX-data or X-data if any))

if step is not "nlvtest". A vector of same length as the number of blocks defining nlv

the number of scores to calculate for each block, or a single number. In this last

case, the same number of scores is used for all the blocks.

nlvlist if step is not "nlvtest". A list of same length as the number of X-blocks. Each

component of the list gives the number of PLS components of the corresponding

X-block to test.

if step is "model": outputs among "scores", "loadings", "coef" (regression comodeloutput

> efficients), "vip" (Variable Importance in Projection; the VIP calculation being based on the proportion of Y-variance explained by the components, as proposed

by Mehmood et al (2012, 2020).)

cvmethod if step is "nlvtest" or "permutation": "kfolds" for k-folds cross-validation, or

"loo" for leave-one-out.

nbrep if step is "nlvtest" and cvmethod is "kfolds": An integer, setting the number of

CV repetitions. Default value is 30. Must me set to 1 if cvmethod is "loo"

seed if step is "nlvtest" and cymethod is "kfolds", or if step is "permutation: a nu-

meric. Seed used for the repeated resampling

samplingk A vector of length n. The elements are the values of a qualitative variable used

for stratified partition creation. If NULL, the first observation is set in the first

fold, the second observation in the second fold, etc...

nfolds if cvmethod is "kfolds". An integer, setting the number of partitions to create.

Default value is 10.

npermut if step is "permutation": An integer, setting the number of Y-Block with permu-

tated responses to create. Default value is 30.

optimisation if step is "nlvtest", method for the error optimisation among "global" (the op-

timal number of latent variables is determined after all the ordred block combination have been computed), or "sequential" (the optimal number of latent

variables is determined after each addition of X-block)

criterion if step is "nlvtest" or "permutation" and method is "plsrda", "plslda" or "plsqda":

optimisation criterion among "rmse" and "err" (for classification error rate)))

selection if step is "nlvtest": a character indicating the selection method to use to choose

the optimal combination of components, among "localmin", "globalmin", "1std". If "localmin": the optimal combination corresponds to the first local minimum of the mean CV rmse or error rate. If "globalmin": the optimal combination corresponds to the minimum mean CV rmse or error rate. If "1std" (one standard error rule): it corresponds to the first combination after which the mean cross-

validated rmse or error rate does not decrease significantly.

import If "R", X and Y are in the global environment, and the observation names are in

rownames. If "ChemFlow", X and Y are tabulated tables (.txt), and the observation names are in the first column. If "W4M", X and Y are tabulated tables (.txt), and the observation names are in the headers of X, and in the first column

of Y.

outputfilename character: If not NULL, name of the tabular file, in which the function outputs

have to be written.)

Value

If step is "nlvtest": table with rmsecv or cross-validated classification error rates. The suggested optimal number of latent variable combination is indicated by the binary "optimum" variable.

If step is "permutation": table with the dissimilarity between the original and the permutated Y-block, and the rmsecv or cross-validated classification error rates obtained with the permutated Y-block by the model and the given number of latent variables.

If step is "model": list of tables of scores, loadings, regression coefficients, and vip values by X-Block, depending of the "modeloutput" parameter.

If step is "prediction": table of predicted scores and predicted classes or values.

```
n <- 50 ; p <- 8
Xtrain <- matrix(rnorm(n * p), ncol = p)</pre>
colnames(Xtrain) <- paste0("V",1:p)</pre>
ytrain \leftarrow sample(c(1, 4, 10), size = n, replace = TRUE)
Xtest <- Xtrain[1:5, ] ; ytest <- ytrain[1:5]</pre>
Xtrainlist <- list(Xtrain[,1:3], Xtrain[,4:8])</pre>
Xtestlist <- list(Xtest[,1:3], Xtest[,4:8])</pre>
nlv <- 5
resnlvtestsoplsrda <- soplsr_soplsda_allsteps(Xlist = Xtrainlist,</pre>
                    Xnames = NULL, Xscaling = c("none", "pareto", "sd")[1],
                    Y = ytrain, Yscaling = "none", weights = NULL,
                    newXlist = Xtestlist, newXnames = NULL,
                    method = c("soplsr", "soplsrda", "soplslda", "soplsqda")[2],
                    prior = c("unif", "prop")[1],
                    step = c("nlvtest", "permutation", "model", "prediction")[1],
                    nlvlist = list(1:2, 1:2),
                    modeloutput = c("scores", "loadings", "coef", "vip"),
                    cvmethod = c("kfolds","loo")[2],
                    nbrep = 1,
                    seed = 123,
                    samplingk = NULL,
                    nfolds = 10,
                    npermut = 5,
                    optimisation = "global",
                    criterion = c("err", "rmse")[1],
                    selection = c("localmin", "globalmin", "1std")[1],
                    outputfilename = NULL)
respermutationsoplsrda <- soplsr_soplsda_allsteps(Xlist = Xtrainlist,</pre>
                    Xnames = NULL, Xscaling = c("none", "pareto", "sd")[1],
                    Y = ytrain, Yscaling = "none", weights = NULL,
                    newXlist = Xtestlist, newXnames = NULL,
                    method = c("soplsr", "soplsrda", "soplslda", "soplsqda")[2],
                    prior = c("unif", "prop")[1],
                    step = c("nlvtest", "permutation", "model", "prediction")[2],
                    nlv = c(2,1),
                    modeloutput = c("scores", "loadings", "coef", "vip"),
```

```
cvmethod = c("kfolds","loo")[2],
                   nbrep = 1,
                   seed = 123,
                   samplingk = NULL,
                   nfolds = 10,
                   npermut = 5,
                   criterion = c("err", "rmse")[1],
                   selection = c("localmin", "globalmin", "1std")[1],
                   outputfilename = NULL)
plotxy(respermutationsoplsrda, pch=16)
abline (h = respermutationsoplsrda[respermutationsoplsrda[,"permut_dyssimilarity"]==0,"res_permut"])
resmodelsoplsrda <- soplsr_soplsda_allsteps(Xlist = Xtrainlist,</pre>
                   Xnames = NULL, Xscaling = c("none", "pareto", "sd")[1],
                   Y = ytrain, Yscaling = "none", weights = NULL,
                   newXlist = Xtestlist, newXnames = NULL,
                   method = c("soplsr", "soplsrda", "soplslda", "soplsqda")[2],
                   prior = c("unif", "prop")[1],
                   step = c("nlvtest", "permutation", "model", "prediction")[3],
                   nlv = c(2,1),
                   modeloutput = c("scores","loadings","coef","vip"),
                   cvmethod = c("kfolds","loo")[2],
                   nbrep = 1,
                   seed = 123,
                   samplingk = NULL,
                   nfolds = 10,
                   npermut = 5,
                   criterion = c("err", "rmse")[1],
                   selection = c("localmin", "globalmin", "1std")[1],
                   outputfilename = NULL)
resmodelsoplsrda$scores
resmodelsoplsrda$loadings
resmodelsoplsrda$coef
resmodelsoplsrda$vip
respredictionsoplsrda <- soplsr_soplsda_allsteps(Xlist = Xtrainlist,</pre>
                   Xnames = NULL, Xscaling = c("none", "pareto", "sd")[1],
                   Y = ytrain, Yscaling = "none", weights = NULL,
                   newXlist = Xtestlist, newXnames = NULL,
                   method = c("soplsr", "soplsrda", "soplslda", "soplsqda")[2],
                   prior = c("unif", "prop")[1],
```

sourcedir 153

```
step = c("nlvtest", "permutation", "model", "prediction")[4],
nlv = c(2,1),
modeloutput = c("scores", "loadings", "coef", "vip"),

cvmethod = c("kfolds", "loo")[2],
nbrep = 1,
seed = 123,
samplingk = NULL,
nfolds = 10,
npermut = 5,

criterion = c("err", "rmse")[1],
selection = c("localmin", "globalmin", "1std")[1],
outputfilename = NULL)
```

sourcedir

Source R functions in a directory

Description

Source all the R functions contained in a directory.

Usage

```
sourcedir(path, trace = TRUE, ...)
```

Arguments

path A character vector of full path names; the default corresponds to the working

directory, getwd().

trace Logical. Default to TRUE. See the code.

... Additional arguments to pass in the function list.files.

Value

Sourcing.

```
path <- "D:/Users/Fun"
sourcedir(path, FALSE)</pre>
```

154 summ

summ

Description of the quantitative variables of a data set

Description

Displays summary statistics for each quantitative column of the data set.

Usage

```
summ(X, nam = NULL, digits = 3)
```

Arguments

Χ	A matrix or data frame containing the variables to summarize.
nam	Names of the variables to summarize (vector of character strings). Default to NULL (all the columns are considered).
digits	Number of digits for the numerical outputs.

Value

```
tab A dataframe of summary statistics : NbVal, Mean, Min., Max., Stdev, Median, X1st.Qu., X3rd.Qu., NbNA
```

```
dat <- data.frame(
  v1 = rnorm(10),
  v2 = c(NA, rnorm(8), NA),
  v3 = c(NA, NA, NA, rnorm(7))
  )
dat

summ(dat)
summ(dat, nam = c("v1", "v3"))</pre>
```

svmr 155

svmr

SVM Regression and Discrimination

Description

SVM models with Gaussian (RBF) kernel.

```
svmr: SVM regression (SVMR).
```

svmda: SVM discrimination (SVMC).

The SVM models are fitted with parameterization 'C', not the 'nu' parameterization.

The RBF kernel is defined by: $exp(-gamma * |x - y|^2)$.

For tuning the model, usual preliminary ranges are for instance:

```
-\cos t = 10^{(-5:15)}
```

- epsilon = seq(.1, .3, by = .1)
- $gamma = 10^{(-6:3)}$

The functions uses function svm of package e1071 (Meyer et al. 2021) available on CRAN (e1071 uses the tool box LIVSIM; Chang & Lin, http://www.csie.ntu.edu.tw/~cjlin/libsvm).

Usage

```
svmr(X, y, cost = 1, epsilon = .1, gamma = 1, scale = FALSE)
svmda(X, y, cost = 1, epsilon = .1, gamma = 1, scale = FALSE)
## S3 method for class 'Svm'
predict(object, X, ...)
## S3 method for class 'Svm'
summary(object, ...)
```

Arguments

X	For the main functions: Training X-data (n, p) . — For the auxiliary functions: New X-data (m, p) to consider.
У	Training Y-data (n).
cost	The cost of constraints violation $cost$ parameter. See svm .
epsilon	The $epsilon$ parameter in the insensitive-loss function. See ${\sf svm}$.
gamma	The gamma parameter in the RBF kernel.
scale	Logical. If TRUE, X and Y are scaled internally.
object	For the auxiliary functions: A fitted model, output of a call to the main function.
	For the auxiliary functions: Optional arguments.

156 symr

Value

For svmr and svmda:

fm

list of outputs such as: call; type; kernel; cost; degree; gamma; coef0; nu; epsilon; sparse; scaled; x.scale; y.scale; nclasses; levels; tot.nSV; nSV; labels; SV: The resulting support vectors (possibly scaled); index: The index of the resulting support vectors in the data matrix. Note that this index refers to the preprocessed data (after the possible effect of na.omit and subset); rho: The negative intercept; compprob; probA, probB: numeric vectors of length k(k-1)/2, k number of classes, containing the parameters of the logistic distributions fitted to the decision values of the binary classifiers $(1/(1 + \exp(a x + b)))$; sigma: In case of a probabilistic regression model, the scale parameter of the hypothesized (zero-mean) laplace distribution estimated by maximum likelihood; coefs: The corresponding coefficients times the training labels; na.action; fitted; decision.values; residuals; isnum.

For predict. Svm:

pred

predictions for each observation.

For summary. Svm:display of call, parameters, and number of support vectors.

Note

The first example illustrates SVMR. The second one is the example of fitting the function sinc(x) described in Rosipal & Trejo 2001 p. 105-106. The third one illustrates SVMC.

References

Meyer, M. 2021 Support Vector Machines - The Interface to libsvm in package e1071. FH Technikum Wien, Austria, David.Meyer@R-Project.org. https://cran.r-project.org/web/packages/e1071/vignettes/svmdoc.pdf Chang, cost.-cost. & Lin, cost.-J. (2001). LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. Detailed documentation (algorithms, formulae, . . .) can be found in http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.ps.gz

```
## EXAMPLE 1 (SVMR)

n <- 50 ; p <- 4
Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- rnorm(n)
m <- 3
Xtest <- Xtrain[1:m, , drop = FALSE]
ytest <- ytrain[1:m]

fm <- svmr(Xtrain, ytrain)
predict(fm, Xtest)
pred <- predict(fm, Xtest)$pred</pre>
```

transform 157

```
msep(pred, ytest)
summary(fm)
## EXAMPLE 2
x < - seq(-10, 10, by = .2)
x[x == 0] <- 1e-5
n <- length(x)</pre>
zy <- sin(abs(x)) / abs(x)
y \leftarrow zy + rnorm(n, 0, .2)
plot(x, y, type = "p")
lines(x, zy, lty = 2)
X \leftarrow matrix(x, ncol = 1)
fm \leftarrow svmr(X, y, gamma = .5)
pred <- predict(fm, X)$pred</pre>
plot(X, y, type = "p")
lines(X, zy, lty = 2)
lines(X, pred, col = "red")
## EXAMPLE 3 (SVMC)
n \leftarrow 50; p \leftarrow 8
Xtrain <- matrix(rnorm(n * p), ncol = p)</pre>
ytrain <- sample(c("a", "10", "d"), size = n, replace = TRUE)
m <- 5
Xtest <- Xtrain[1:m, ] ; ytest <- ytrain[1:m]</pre>
cost <- 100 ; epsilon <- .1 ; gamma <- 1 \,
fm <- svmda(Xtrain, ytrain,</pre>
    cost = cost, epsilon = epsilon, gamma = gamma)
predict(fm, Xtest)
pred <- predict(fm, Xtest)$pred</pre>
err(pred, ytest)
summary(fm)
```

transform

Generic transform function

Description

Transformation of the X-data by a fitted model.

Usage

```
transform(object, X, ...)
```

158 vip

Arguments

object A fitted model, output of a call to a fitting function.X New X-data to consider.... Optional arguments.

Value

the transformed X-data

Examples

```
## EXAMPLE 1

n <- 6 ; p <- 4
X <- matrix(rnorm(n * p), ncol = p)
y <- rnorm(n)

fm <- pcaeigen(X, nlv = 3)

fm$T
transform(fm, X[1:2, ], nlv = 2)

## EXAMPLE 2

n <- 6 ; p <- 4
X <- matrix(rnorm(n * p), ncol = p)
y <- rnorm(n)

fm <- plskern(X, y, nlv = 3)
fm$T
transform(fm, X[1:2, ], nlv = 2)</pre>
```

vip

Variable Importance in Projection (VIP)

Description

vip calculates the Variable Importance in Projection (VIP) for a PLS model.

Usage

```
vip(object, X, Y = NULL, nlv = NULL)
```

vip 159

Arguments

object	A fitted model, output of a call to a fitting function among plskern, plsnipals, plsrannar, plsrda, plslda), plsqda).
X	X-data involved in the fitted model
Y	Y-data involved in the fitted model. If Y is NULL (default value), the VIP calculation is based on the proportion of Y-variance explained by the components, as proposed by Mehmood et al (2012, 2020). If Y is not NULL, the VIP calculation is based on the redundancy, as proposed by Tenenhaus (1998).
nlv	Number of components (LVs) to consider.

Value

matrix ((q, nlv)) with VIP values, for models with 1 to nlv latent variables.

References

Mehmood, T.,Liland, K.H.,Snipen, L.,Sæbø, S., 2012. A review of variable selection methods in Partial Least Squares Regression. Chemometrics and Intelligent Laboratory Systems, 118, 62-69.

Mehmood, T., Sæbø, S.,Liland, K.H., 2020. Comparison of variable selection methods in partial least squares regression. Journal of Chemometrics, 34, e3226.

Tenenhaus, M., 1998. La régression PLS: théorie et pratique. Editions Technip, Paris, France.

```
## EXAMPLE OF PLS
n < -50; p < -4
Xtrain <- matrix(rnorm(n * p), ncol = p)</pre>
ytrain <- rnorm(n)</pre>
Ytrain <- cbind(y1 = ytrain, y2 = 100 * ytrain)
Xtest <- Xtrain[1:m, , drop = FALSE]</pre>
Ytest <- Ytrain[1:m, , drop = FALSE] ; ytest <- Ytest[1:m, 1]</pre>
nlv <- 3
fm <- plskern(Xtrain, Ytrain, nlv = nlv)</pre>
vip(fm, Xtrain, Ytrain, nlv = nlv)
vip(fm, Xtrain, nlv = nlv)
fm <- plskern(Xtrain, ytrain, nlv = nlv)</pre>
vip(fm, Xtrain, ytrain, nlv = nlv)
vip(fm, Xtrain, nlv = nlv)
## EXAMPLE OF PLSDA
n <- 50 ; p <- 8
Xtrain <- matrix(rnorm(n * p), ncol = p)</pre>
ytrain <- sample(c("1", "4", "10"), size = n, replace = TRUE)
```

160 wdist

```
Xtest <- Xtrain[1:5, ] ; ytest <- ytrain[1:5]
nlv <- 5
fm <- plsrda(Xtrain, ytrain, nlv = nlv)
vip(fm, Xtrain, ytrain, nlv = nlv)</pre>
```

wdist

Distance-based weights

Description

Calculation of weights from a vector of distances using a decreasing inverse exponential function.

Let d be a vector of distances.

- 1- Preliminary weights are calculated by w = exp(-d/(h*mad(d))), where h is a scalar > 0 (scale factor).
- 2- The weights corresponding to distances higher than median(d) + cri * mad(d), where cri is a scalar > 0, are set to zero. This step is used for removing outliers.
- 3- Finally, the weights are "normalized" between 0 and 1 by w = w/max(w).

Usage

```
wdist(d, h, cri = 4, squared = FALSE)
```

Arguments

d A vector of distances.

h A scaling factor (positive scalar). Lower is h, sharper is the decreasing function.

See the examples.

cri A positive scalar used for defining outliers in the distances vector.

squared Logical. If TRUE, distances d are replaced by the squared distances in the de-

creasing function, which corresponds to a Gaussian (RBF) kernel function. De-

fault to FALSE).

Value

A vector of weights.

```
x1 <- sqrt(rchisq(n = 100, df = 10))
x2 <- sqrt(rchisq(n = 10, df = 40))
d <- c(x1, x2)
h <- 2; cri <- 3
w <- wdist(d, h = h, cri = cri)</pre>
```

xfit 161

```
oldpar <- par(mfrow = c(1, 1))
par(mfrow = c(2, 2))
plot(d)
hist(d, n = 50)
plot(w, ylim = c(0, 1)); abline(h = 1, lty = 2)
plot(d, w, ylim = c(0, 1)); abline(h = 1, lty = 2)
par(oldpar)
d < - seq(0, 15, by = .5)
h <- c(.5, 1, 1.5, 2.5, 5, 10, Inf)
for(i in 1:length(h)) {
  w \leftarrow wdist(d, h = h[i])
  z \leftarrow data.frame(d = d, w = w, h = rep(h[i], length(d)))
  if(i == 1) res <- z else res <- rbind(res, z)</pre>
  }
res$h <- as.factor(res$h)</pre>
headm(res)
plotxy(res[, c("d", "w")], asp = 0, group = res$h, pch = 16)
```

xfit

Matrix fitting from a PCA or PLS model

Description

Function xfit calculates an approximate of matrix X (X_fit) from a PCA or PLS fitted on X. Function xresid calculates the residual matrix $E = X - X_fit$.

Usage

```
xfit(object, X, ...)
## S3 method for class 'Pca'
xfit(object, X, ..., nlv = NULL)
## S3 method for class 'Plsr'
xfit(object, X, ..., nlv = NULL)
xresid(object, X, ..., nlv = NULL)
```

Arguments

object A fitted model, output of a call to a fitting function.

X The X-data that was used to fit the model object.

Number of components (PCs or LVs) to consider.

Optional arguments.

162 xfit

Value

For xfit:matrix of fitted values.

For xresid:matrix of residuals.

```
n <- 6 ; p <- 4
X <- matrix(rnorm(n * p), ncol = p)
y <- rnorm(n)

nlv <- 3
fm <- pcasvd(X, nlv = nlv)
xfit(fm, X)
xfit(fm, X, nlv = 1)
xfit(fm, X, nlv = 0)

X - xfit(fm, X)
xresid(fm, X)

X - xfit(fm, X, nlv = 1)
xresid(fm, X, nlv = 1)</pre>
```

Index

* datagen	orthog, 96
aggmean, 4	pcasvd, 98
aicplsr, 5	pinv, 101
blockscal, 8	plotjit, 102
cglsr, 10	plotscore, 103
checkdup1, 12	plotsp, 104
checkna, 13	plotxna, 106
covsel, 14	plotxy, 107
dderiv, 15	plskern, 109
detrend, 16	plsr_agg, 118
dfplsr_cg, 17	plsr_plsda_allsteps, 120
dkplsr, 20	plsrda, 112
dkrr, 22	plsrda_agg, 115
dmnorm, 25	rmgap, 124
dtagg, 26	rr, 125
dummy, 27	rrda, 127
eposvd, 28	sampcla, 129
euclsq, 29	sampdp, 130
fda, 30	sampks, 132
getknn, 33	savgol, 133
headm, 41	scordis, 134
interpl, 42	segmkf, 135
kpca, 46	selwold, 136
kplsr,48	snv, 139
kplsrda,51	sopls, 140
krbf, 53	soplsr_soplsda_allsteps, 148
krr, 54	soplsrda, 144
krrda, 57	sourcedir, 153
lda, 58	summ, 154
lmr, 61	svmr, 155
lmrda, 62	transform, 157
locw, 64	vip, 158
matW, 78	wdist, 160
mavg, 79	xfit, 161
mbplsr, 80	* datasets
mbplsr_mbplsda_allsteps, 87	asdgap, 7
mbplsrda, 83	cassav, 9
mse, 91	forages, 32
odis,94	octane, 93

INDEX

ozone, 97	forages, 32
adjustcolor, <i>102</i> , <i>108</i>	get.knnx, <i>33</i>
aggmean, 4	getknn, 33, 65, 66
aggregate, 26	gridcv, 34
aicplsr, 5	gridcvlb(gridcv), 34
asdgap, 7	gridcvlv (gridcv), 34
axis, 108	gridscore, 37
	gridscorelb (gridscore), 37
bias (mse), 91	gridscorelv (gridscore), 37
blockscal, 8	
	hconcat (blockscal), 8
cassav, 9	headm, 41
cglsr, 10	
checkdupl, 12	interp1, <i>42</i>
checkna, 13	interpl, 42
coef.Cglsr(cglsr), 10	lunada 12
coef.Dkpls(dkplsr), 20	knnda, 43
coef.Dkrr (dkrr), 22	knnr, 45
coef.Kplsr(kplsr), 48	kpca, 46
coef.Krr (krr), 54	kplsr, 48
coef.Lmr(lmr), 61	kplsrda, 51
coef.Mbplsr(mbplsr), 80	kpol (krbf), 53
coef.Plsr (plskern), 109	krbf, 20, 23, 47, 49, 51, 53, 54, 57
coef.Rr (rr), 125	krr, 54
cor2 (mse), 91	krrda, 57
covsel, 14	ktanh (krbf), 53
data.table::data.table, 26	1da, 58
dderiv, 15	lines, <i>105</i>
detrend, 16	list.files, <i>153</i>
dfplsr_cg, 5, 11, 17	lm, 61, 96
dfplsr_cov, 5	lmr, 61
dfplsr_cov (dfplsr_cg), 17	lmrda, 62
dfplsr_div, 5	locw, 64, 66, 67
dfplsr_div (dfplsr_cg), 17	locwlv (locw), 64
dkplsr, 20	lodis (odis), 94
dkrr, 22	lowess, <i>137</i>
dmnorm, 25, 59	lwplslda(lwplsrda), 68
dtagg, 26	lwplslda_agg(lwplsrda_agg),71
dummy, 27	lwplsqda(lwplsrda), 68
	lwplsqda_agg(lwplsrda_agg),71
eigen, 98	lwplsr, 64, 66, 68, 75
eposvd, 28	lwplsr_agg,75
err (mse), 91	lwplsrda,68
euclsq, 29	lwplsrda_agg,71
euclsq_mu (euclsq), 29	
	mahsq (euclsq), 29
fda, 30	mahsq_mu (euclsq), 29
fdasvd (fda), 30	matB(matW), 78

INDEX 165

matW, 78	points, <i>106</i> , <i>108</i>
mavg, 79	poly, <i>16</i>
mblocks(blockscal), 8	predict.Cglsr(cglsr), 10
mbplslda, 87	<pre>predict.Dkplsr(dkplsr), 20</pre>
mbplslda(mbplsrda), 83	predict.Dkrr(dkrr), 22
mbplsqda, 87	<pre>predict.Dmnorm (dmnorm), 25</pre>
mbplsqda (mbplsrda), 83	predict.Knnda (knnda), 43
mbplsr, 80, 87	predict.Knnr (knnr), 45
mbplsr_mbplsda_allsteps, 82, 85, 87	predict.Kplsr(kplsr),48
mbplsrda, 83, 87	predict.Kplsrda(kplsrda), 51
mpars, <i>35</i>	predict.Krr(krr),54
mpars (gridscore), 37	predict.Krrda(krrda), 57
mse, 91	predict.Lda(lda),58
msep, 34, 38	predict.Lmr(lmr), 61
msep (mse), 91	predict.Lmrda(lmrda), 62
	predict.Lwplsprobda(lwplsrda), 68
octane, 93	<pre>predict.Lwplsprobda_agg(lwplsrda_agg),</pre>
odis,94	71
orthog, 96	<pre>predict.Lwplsr(lwplsr), 66</pre>
ozone, 97	<pre>predict.Lwplsr_agg(lwplsr_agg), 75</pre>
	predict.Lwplsrda(lwplsrda), 68
pcaeigen (pcasvd), 98	<pre>predict.Lwplsrda_agg(lwplsrda_agg), 71</pre>
pcaeigenk (pcasvd), 98	predict.Mbplsprobda(mbplsrda), 83
pcanipals (pcasvd), 98	predict.Mbplsr(mbplsr), 80
pcanipalsna (pcasvd), 98	predict.Mbplsrda(mbplsrda), 83
pcasph (pcasvd), 98	predict.Plsda_agg(plsrda_agg), 115
pcasvd, 98	predict.Plsprobda (plsrda), 112
pinv, 101	predict.Plsr (plskern), 109
plot, 103, 105, 107, 108	predict.Plsr_agg(plsr_agg), 118
plot.default, <i>105</i> , <i>107</i>	predict.Plsrda(plsrda), 112
plotjit, 102	predict.Qda (lda), 58
plotscore, 103	predict.Rr (rr), 125
plotsp, 104	predict.Rrda (rrda), 127
plotsp1 (plotsp), 104	predict.Soplsprobda(soplsrda), 144
plotxna, 106	predict.Soplsr(sopls), 140
plotxy, 107	predict.Soplsrda(soplsrda), 144
plskern, <i>5</i> , <i>17</i> , 109, <i>118</i> , <i>120</i>	predict.Svm(svmr), 155
plslda, <i>68</i> , <i>71</i> , <i>115</i> , <i>120</i>	
plslda(plsrda), 112	qda (1da), 58
plslda_agg(plsrda_agg), 115	
plsnipals (plskern), 109	r2 (mse), 91
plsqda, 68, 71, 115, 120	residcla (mse), 91
plsqda (plsrda), 112	residreg (mse), 91
plsqda_agg(plsrda_agg), 115	rmgap, 124
plsr_agg, 118	rmsep (mse), 91
plsr_plsda_allsteps, <i>111</i> , <i>114</i> , 120	rpd (mse), 91
plsrannar (plskern), 109	rpdr (mse), 91
plsrda, <i>68</i> , <i>71</i> , 112, <i>115</i> , <i>120</i>	rr, 125
plsrda_agg, 115	rrda, 127

166 INDEX

sampcla, 129	transform.Soplsr(sopls), 140
sampdp, 130	transform. Soplsrda (soplsrda), 144
sampks, 132	1.50
savgol, 133	vip, 158
scordis, 134	
segmkf, <i>34</i> , 135	wdist, 44, 45, 67, 70, 72, 75, 76, 160
segmts, 34	xfit, 161
segmts (segmkf), 135	xresid (xfit), 161
selwold, 136	xresta (xrrt), 101
sep (mse), 91	
sgolayfilt, <i>133</i>	
snv, 139	
sopls, 140	
soplslda, 148	
soplslda (soplsrda), 144	
soplsldacv (soplsrda), 144	
soplsqda, 148	
soplsqda (soplsrda), 144	
soplsqdacv (soplsrda), 144	
soplsr, <i>148</i>	
soplsr (sopls), 140	
soplsr_soplsda_allsteps, 142, 147, 148	
soplsrcv (sopls), 140	
soplsrda, 144, <i>148</i>	
soplsrdacv (soplsrda), 144	
sourcedir, 153	
splinefun, 42	
summ, 154	
summary.Fda (fda), 30	
summary.Kpca (kpca), 46	
summary.Mbplsr(mbplsr), 80	
summary.Pca (pcasvd), 98	
summary.Plsr (plskern), 109	
summary.Svm (svmr), 155	
svd, 98	
svm, 155	
svmda (svmr), 155	
svmr, 155	
37mi, 133	
text, <i>108</i>	
transform, 157	
transform. Dkpls (dkplsr), 20	
transform. Fda (fda), 30	
transform.Kpca (kpca), 46	
transform.Kplsr(kplsr), 48	
transform.Mbplsr(mbplsr), 80	
transform. Pca (pcasvd), 98	
transform.Plsr (plskern), 109	
transform. Soplsprobda (soplsrda), 144	